Matematyka

Matematyka z kluczem 4. Podręcznik cz. 2 (Podręcznik, Nowa Era)

Każdy z 12 uczniów wylosował jedna z karteczek przedstawionych na rysunku 4.5 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Każdy z 12 uczniów wylosował jedna z karteczek przedstawionych na rysunku

6
 Zadanie

I
 Zadanie
II
 Zadanie
III
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Najpierw wyszukujemy liczby równe: 

`6/100=0,06=0,060`

`65/100=0,65`

`6/10=0,6=0,60=0,600=60/100=600/1000`

`0,56`

 

 Liczby w kolejności rosnącej: 

`0,06<0,56<0,6<0,65`

 

Dzieci stojące na drugim schodku od góry mają karteczki: 

`6/10,\ 0,6,\ 0,60,\ 0,600,\ 60/100,\ 600/1000`

 

DYSKUSJA
Informacje
Matematyka z kluczem 4. Podręcznik cz. 2
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

12791

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Prostokąt

Prostokąt to czworokąt, którego wszystkie kąty wewnętrzne są kątami prostymi.

Sąsiednimi bokami nazywamy te boki, które mają wspólny wierzchołek. W prostokącie każde dwa sąsiednie boki są prostopadłe.

Przeciwległymi bokami nazywamy te boki, które nie mają punktów wspólnych. W prostokącie przeciwległe boki są równoległe oraz mają równą długość.

Odcinki, które łączą dwa przeciwległe wierzchołki (czyli wierzchołki nie należące do jednego boku) nazywamy przekątnymi. Przekątne prostokąta mają równe długości oraz przecinają się w punkcie, który jest środkiem każdej przekątnej, to znaczy punkt ten dzieli przekątne na połowy.

Wymiarami prostokąta nazywamy długości dwóch sąsiednich boków. Jeden bok nazywamy długością, a drugi szerokością prostokąta.
 

prostokat
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Zobacz także
Udostępnij zadanie