Matematyka

a) Wysokość równoległoboku opuszczona na dłuższy bok jest równa 5 cm 4.47 gwiazdek na podstawie 19 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

a) Wysokość równoległoboku opuszczona na dłuższy bok jest równa 5 cm

8
 Zadanie
9
 Zadanie

10
 Zadanie

`a)` 

x - długość krótszego boku (w cm)

x+4 - długość dłuższego boku (w cm)

 

`x+x+4+x+x+4=32`

`4*x+8=32\ \ \ |-8`

`4*x=24\ \ \ \|:4`

`x=6`

`x+4=10`

 

`P=10\ cm*5\ cm=50\ cm^2`

 

 

`b)` 

Jeśli od obwodu odejmiemy długości dwóch ramion, to dostaniemy sumę długości podstaw (która jest potrzebna do obliczenia pola). Zwróć uwagę, że nie musimy wiedzieć, jaką konkretnie długość ma każda podstawa, wystarczy nam, że będziemy znali sumę długości podstaw. 

`30\ cm-2*5\ cm=30\ cm-10\ cm=20\ cm` 

`P=20\ cm*4\ cm*1/2=20\ cm*2\ cm=40\ cm^2` 

 

Odpowiedź:a) Pole tego równoległoboku wynosi 50 cm² . b) Pole tego trapezu wynosi 40 cm² .
DYSKUSJA
Informacje
Sprawdzian na 100%. Repetytorium szóstoklasisty
Autorzy: Hanna Jaku, Elżbieta Rzepecka, Barbara Stryczniewicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

4794

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zobacz także
Udostępnij zadanie