Matematyka

Sprowadź ułamki do wspólnego mianownika. 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Sprowadź ułamki do wspólnego mianownika.

4
 Zadanie

5
 Zadanie

6
 Zadanie
7
 Zadanie

`a)\ 2/3=8/12`

`3/4=9/12`

 

`b)\ 3/4=6/8`

 

`c)\ 6/7=24/28`

`3/4=21/28`

 

`d)\ 2/9=4/18`

`5/6=15/18`

 

`e)\ 5/12=10/24`

`7/8=21/24`

 

`f)\ 2/5=18/45`

`4/9=20/45`

 

`g)\ 9/16=27/48`

`7/24=14/48`

 

`h)\ 3/16=9/48`

`5/12=20/48`

 

`i)\ 2/15=6/45`

`7/9=35/45`

DYSKUSJA
Informacje
Sprawdzian na 100%. Repetytorium szóstoklasisty
Autorzy: Hanna Jaku, Elżbieta Rzepecka, Barbara Stryczniewicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

4909

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Zobacz także
Udostępnij zadanie