Matematyka

Która z liczb jest większa i o ile? 4.17 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Która z liczb jest większa i o ile?

4
 Zadanie
5
 Zadanie

6
 Zadanie

7
 Zadanie

`a) \ -21 1/5+14,7=-21,2+14,7=-6,5`

`\ \ \ \ 13,5+(-20 1/4)=13,5-20,25=-6,75`


Porównanie liczb: 
`-6,5 \ \ > \ \ -6,75`    


Różnica między liczbami:
`-6,5-(-6,75)=-6,5+6,75=0,25` 

Liczba -6,5 jest o 0,25 większa od liczby -6,75.
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`b) \ 3 7/15+(-1 2/3)=3 7/15-1 10/15= 1 12/15=1 4/5=1,8`  

`\ \ \ -(-1 3/5)-5,3=1,6-5,3=-3,7`


Porównanie liczb:
`1,8 \ \ > \ \ -3,7` 


Różnica między liczbami:
`1,8-(-3,7)=1,8+3,7=5,5` 

Liczba 1,8 jest o 5,5 większa od liczby -3,7. 

DYSKUSJA
Informacje
Ciekawi Świata 6. Zeszyt Ćwiczeń cz. 2
Autorzy: Praca zbiorowa
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Zobacz także
Udostępnij zadanie