Matematyka

Jeśli przeczytałeś notkę historyczną z podręcznika to wiesz, że w starożytnym Rzymie zasady (...) 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Jeśli przeczytałeś notkę historyczną z podręcznika to wiesz, że w starożytnym Rzymie zasady (...)

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

MCCCCLXII oznacza 1462, poprawny zapis to MCDLXII

MCCCC to 1400 (4 liczby C zapisane obok siebie oznaczają 4 razy po 100)

 

CCMXXXX oznacza 840, poprawny zapis to DCCCXL

CCM oznacza, że od 1000 (M) odejmujemy 200 (CC), ponieważ CC zapisano po lewej stronie M, XXXX oznacza 4 razy po 10, czyli 40

 

MIM oznacza 1999, poprawny zapis to CMXCIX

IM oznacza 999, ponieważ I (1) zapisano na lewo od M (1000), a 1000-1=999

 

MMMCXXC oznacza 3180, poprawny zapis to MMMCLXXX

XXC oznacza 80, ponieważ XX (20) zapisano po lewej stronie C (100), co oznacza, że od 100 odejmujemy 20

DYSKUSJA
user profile image
Gość

24-09-2017
Dzieki za pomoc
Informacje
Matematyka z plusem 3
Autorzy: Dobrowolska Małgorzata, Jucewicz Marta, Karpiński Marcin
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Paweł

8066

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Zobacz także
Udostępnij zadanie