Matematyka

Matematyka z kluczem 6 (Podręcznik, Nowa Era)

Janek zdobył na klasówce 18 punktów, czyli o połowę więcej niż Kuba. 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Janek zdobył na klasówce 18 punktów, czyli o połowę więcej niż Kuba.

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

6
 Zadanie
7
 Zadanie
8
 Zadanie

Kuba zdobył `x`  

Janek zdobył o połowę więcej, czyli `x+1/2x=1 1/2x` 

`1 1/2x=18` 

`3/2x=18` `|*2` 

`3x=36` `|:3` 

`x=12`  ` `

 

 

Odpowiedź:

Kuba zdobył 12 punktów. 

DYSKUSJA
Informacje
Matematyka z kluczem 6
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

13007

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Zobacz także
Udostępnij zadanie