Matematyka

Na ile sposobów można otrzymać liczbę -24? 4.5 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Na ile sposobów można otrzymać liczbę -24?

1
 Zadanie

2
 Zadanie

I
 Zadanie
II
 Zadanie
III
 Zadanie

`-24=-2*12` 


`-24=-2*2*6` 

`-24=-2*3*4` 

`-24=-2*3*2*2` 

 

 


`-24=-3*8` 
`-24=-3*2*4` 

`-24=-3*2*2*2` 

 

 

`-24=-4*6` 

`-24=-4*2*3` 



`-24=-6*4` 

`-24=-6*2*2` 



`-24=-8*3` 

 


`-24=-12*2` 

Odpowiedź:

24 można przedstawić na 13 sposobów. 

DYSKUSJA
Informacje
Matematyka z kluczem 6
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paweł

4752

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Prostopadłościan

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.
  • Każdy prostopadłościan ma 6 ścian - 4 ściany boczne i 2 podstawy, 8 wierzchołków i 12 krawędzi.
  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.
  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.
  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.

Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c. Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

Prostopadłościan - długości

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.

Prostopadłościan, którego wszystkie ściany są kwadratami nazywamy sześcianem.Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat
Zobacz także
Udostępnij zadanie