Matematyka

Oblicz. a) 34:2 b) 42:3 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

a) 

34:2=(20+14):2= 20:2+14:2=10+7=17

b)

42:3=(30+13):3=30:3+12:3=10+4=14

c)

95:5=(50+45):5= 50:5+45:5=10+9=19

d)

84:7=(70+14):7=70:7+14:7=10+2=12

e)

105:3=(90+15)=90:3+15:3=30+5=35

f)

180:5= (150+30):5=150:5+30:5= 30+6=36

g)

216:3=(180+36):3= 180:3+36:3=72

h)

168:7= (140+28):7= 140:7+28:7=20+4=24

i)

198:9=(180+18):9=180:9+18:9=20+2=22

j)

119:7= (70+49):7= 70:7+49:7=10+7=17

DYSKUSJA
user profile image
Gość

0

2017-10-13
Dziękuję!
user profile image
Gość

0

2017-10-17
dzięki!!!!
Informacje
Matematyka z kluczem 4. Podręcznik cz. 1
Autorzy: Braun Marcin, Mańkowska Agnieszka, Paszyńska Małgorzata
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

1807

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Zobacz także
Udostępnij zadanie