Matematyka

Kubusiowi śniło się dzisiaj, że sięga nieba, bo wszedł już na dwieście drugi 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Kubusiowi śniło się dzisiaj, że sięga nieba, bo wszedł już na dwieście drugi

9
 Zadanie

UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

a) Szczebelki są rozmieszczone co 30 cm, czyli Kubuś będąc na 202 szczebelków wspiął się na wysokość 202 razy większą od 30cm

202*30= 6060cm= 60 m 60 cm

b) Kubuś wspiął się na 202 szczebelek- był on przedostatni, czyli wszystkich szczebelków było 203. Rysunek jest tylko pomocniczy, nie ma na nim wyrysowanych 203 szczebelków.

Pomiędzy 203 szczebelkami mamy 202 odległości o długości 30 cm, odległości te są również między końcem drabiny a ostatnim i pierwszym szczebelkiem, razem więc mamy 204 odległości. Obliczając tę długość wszystkich odległości, dowiemy sie ile pręta potrzeba na długość drabiny. Drabina posiada dwa długie pręty na długości, musimy zatem ilość tą pomnożyć razy dwa

Obliczamy jeszcze ile pręta potrzebujemy na wykonanie szczebelek- jest ich 203, każda o długości 46 cm. 

 

Razem potrzebujemy:

21578 cm= 215 m 78 cm 

DYSKUSJA
Informacje
Matematyka z kluczem 4. Podręcznik cz. 1
Autorzy: Braun Marcin, Mańkowska Agnieszka, Paszyńska Małgorzata
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

1812

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Zobacz także
Udostępnij zadanie