Matematyka

Uzupełnij zapisy, tak aby były prawdziwe. wpisz w każdą lukę odpowiednią liczbę. 4.64 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Uzupełnij zapisy, tak aby były prawdziwe. wpisz w każdą lukę odpowiednią liczbę.

4
 Zadanie

5
 Zadanie

1
 Zadanie

`"I."\ sqrt32- sqrt18= sqrt(16*2)- sqrt(9*2)= 4sqrt2-3sqrt2= 1sqrt2`

`"II."\ 3sqrt3+ sqrt12= 3sqrt3+ sqrt(4*3)=3sqrt3+2sqrt3= 5sqrt3`

`"III."\ sqrt45+7sqrt5= sqrt(9*5)+7sqrt5= 3sqrt5+7sqrt5=10sqrt5`

`"IV."\ sqrt50-sqrt162=sqrt(25*2)-sqrt(81*2)=5sqrt2-9sqrt2=(-4sqrt2)`

DYSKUSJA
user profile image
Gość

30-09-2017
Dziękuję!
user profile image
Gość

23-09-2017
Dzięki
Informacje
Matematyka wokół nas 2. Zeszyt ćwiczeń cz. 1
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

3862

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zobacz także
Udostępnij zadanie