Matematyka

Oblicz miary kątów, jakie z bokami prostokąta tworzy przekątna, wiedząc, że 4.43 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Oblicz miary kątów, jakie z bokami prostokąta tworzy przekątna, wiedząc, że

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie

8
 Zadanie

Przekątne w prostokącie dzielą go na 4 trójkaty równoboczne. 

`beta=(180^o-80^o):2=100^o:2=50^o`

`alpha+beta=90^o`

`alpha=90^o-50^o=40^o`

 

Odpowiedź:

Kąty jakie tworzy przekątna z bokami w tym prostokącie mają miary `40^o` i `50^o` .

DYSKUSJA
Informacje
Ciekawi Świata 5. Podręcznik cz. 1
Autorzy: Bożena Kiljańska, Adam Konstantynowicz, Anna Konstantynowicz, Małgorzata Pająk
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Udostępnij zadanie