Matematyka

Oblicz iloczyny. Pamiętaj o skracaniu. a) 8* 5/12 4.83 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Oblicz iloczyny. Pamiętaj o skracaniu. a) 8* 5/12

1
 Zadanie

2
 Zadanie

3
 Zadanie

a) 

`8 * 5/12 = 40/12= 3 4/12= 3 1/3`

b)

`10* 3/20= 30/20=3/2=1 1/2`

c)

`12 * 8/15= 12/1* 8/15= 4/1*8/5=32/5=6 2/5`

d)

`3* 2 1/2= 3 * 5/2= 15/2= 7 1/2`

e)

`5* 3 1/10= 5* 31/10= 155/10= 15 5/10= 15 1/2`

f)

`21* 3 3/14= 21 *45/14= 21/1*45/14= 3/1*45/2=135/2=67 1/2`

DYSKUSJA
Informacje
Ciekawi Świata 5. Zeszyt ćwiczeń cz. 1
Autorzy: B. Kiljańska, A. Konstantynowicz, M. Pająk
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile image

Monika

3862

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Zobacz także
Udostępnij zadanie