Odmień rzeczowniki "tło", "przyjaciel" i "słowo" - Zadanie 9: Nowe Słowa na start! 8 - strona 173
Język polski
Wybierz książkę
Odmień rzeczowniki "tło", "przyjaciel" i "słowo" 4.5 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Język polski

Odmień rzeczowniki "tło", "przyjaciel" i "słowo"

7
 Indywidualne
8
 Zadanie

9
 Zadanie

przypadek liczba pojedyncza liczba mnoga oboczności liczba pojedyncza liczba mnoga oboczności liczba pojedyncza liczba mnoga oboczności

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Joanna Kościerzyńska, Małgorzata Chmiel, Maciej Szulc, Agnieszka Gorzałczyńska-Mróz
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326733642
Autor rozwiązania
user profile

Iwona

25770

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $r.2$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $5•5=5^2 $, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $7•7•7=7^3$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $3•3•3•3•3=3^5 $, czytamy: „trzy do potęgi piątej”

    $2•2•2•2•2•2•2=2^7 $, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2822ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6533WIADOMOŚCI
NAPISALIŚCIE742KOMENTARZY
komentarze
... i8368razy podziękowaliście
Autorom