Język polski

Poniżej zamieszczono dwa 3.15 gwiazdek na podstawie 20 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Język polski

a)

Zdania główne:

W ostatnim stuleciu dynamiczny

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Anna Patoka

1

10 października 2017
Ale mimo iz indywidualne jest b mozna byloby cos napisac zeby chociaz sie wspomoc
user avatar
Iwona

21402

11 października 2017
@Anna Patoka Witam serdecznie, zadania indywidualne charakteryzują się tym, że każdy musi mieć je zrobione inaczej, dlatego nie podajemy przykładów. Pozdrawiam!
user avatar
mateusz228

1

9 października 2017
gdzie jest zadanie b
user avatar
Iwona

21402

10 października 2017
@mateusz228 Cześć, podpunkt b) jest indywidualny. Pozdrawiam!
user avatar
Szymon

1

2 października 2017
Dzieki za pomoc!
user avatar
Karol Mosioł

5

26 września 2017
czm nie ma b;o
user avatar
Iwona

21402

27 września 2017
@Karol Mosioł Cześć, podpunkt b) jest indywidualny. Pozdrawiam!
klasa:
Informacje
Autorzy: Joanna Kościerzyńska, Małgorzata Chmiel, Maciej Szulc, Agnieszka Gorzałczyńska-Mróz
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326731488
Autor rozwiązania
user profile

Iwona

21402

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Kolejność wykonywania działań

Przy rozwiązywaniu działań najważniejsze jest zachowanie odpowiedniej kolejności wykonywania działań.


Kolejność wykonywania działań:

  1. Działania w nawiasach

  2. Potęgowanie

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje zarówno dzielenie jak i mnożenie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej do prawej strony).
    Przykład`16:2*5=8*5=40` 

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje zarówno odejmowanie jak i dodawanie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej strony do prawej).
    Przykład`24-6+2=18+2=20` 


Przykład:

`(45-9*3)-4=(45-27)-4=18-4=14` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom