Opowiedz krótko... - Zadanie 2: Słowa na start! 6 Podręcznik cz. 1 - strona 132
Język polski
Wybierz książkę
Opowiedz krótko... 4.38 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Język polski
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do odpowiedzi undefined
amelka1301

22 maja 2018
Cześć czy można rozwiązania pod komentarzem do zadania 2 3 4 5 6 7 8 będę wdzieczna
komentarz do odpowiedzi undefined
Odrabiamy.pl

1072

23 maja 2018

@amelka1301 Cześć, rozwiązania zadań są dostępne na naszej stronie. Aby je zobaczyć, należy wykupić konto premium tutaj: Link Pozdrawiam!

klasa:
4 szkoły podstawowej
Informacje
Autorzy: Marlena Derlukiewicz
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326728631
Autor rozwiązania
user profile

Iwona

25905

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $1 mm^2$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $1 mm^2$
  • $1 cm^2$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $cm^2$
  • $1 dm^2$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $1 dm^2$
  • $1 m^2$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $1 m^2$
  • $1 km^2$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $1 km^2$
  • $1 a$ (ar) → pole kwadratu o boku 10 m jest równe 100 $m^2$
  • $1 ha$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $m^2$

Zależności między jednostkami pola:

  • $1 cm^2 = 100 mm^2$ ; $1 mm^2 = 0,01 cm^2$
  • $1 dm^2 = 100 cm^2 = 10 000 mm^2$; $1 cm^2 = 0,01 dm^2$
  • $1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$; $1 dm^2 = 0,01 m^2$
  • $1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$; $1 ha = 0,01 km^2$
  • $1 a = 100 m^2$; $1 m^2 = 0,01 a$
  • $1 ha = 100 a = 10 000 m^2$; $1 a = 0,01 ha$

Przykłady wyprowadzania powyższych zależności:

  • $1 cm^2 = 10mm•10mm=100$ $mm^2$
  • $1 cm^2 = 0,1dm•0,1dm=0,01$ $dm^2$
  • $1 km^2 = 1000m•1000m=1000000$ $m^2$
Dodawanie ułamków zwykłych
  1. Dodawanie ułamków o jednakowych mianownikach – dodajemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $4/7+6/7={10}/7=1 3/7$

      Uwaga

    Gdy w wyniku dodania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości (jak w przykładzie powyższym).

    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę (jak w przykładzie poniżej).

  2. Dodawanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy dodawanie.

    Przykład:

    • $3/10+ 1/5=3/{10}+ {1•2}/{5•2}=3/{10}+ 2/{10}=5/{10}={5÷5}/{10÷5}=1/2$
       
  3. Dodawanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy dodawanie ułamków o jednakowych mianownikach.

      $2 1/3+ 1 1/3= {2•3+1}/3+{1•3+1}/3=7/3+4/3={11}/3=3 2/3$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $2 1/3+ 1 1/3= 2 + 1/3+ 1 + 1/3= 3 + 2/3= 3 2/3$
       
  4. Dodawanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy dodawanie.

      $2 1/3+ 1 1/2= {2•3+1}/3+{1•2+1}/2=7/3+3/2={7•2}/{3•2}+{3•3}/{2•3}={14}/6 + 9/6={23}/6=3 5/6$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $2 1/3+ 1 1/2= 2 + 1/3+ 1 + 1/2= 3 + 1/3+ 1/2= 3 + {1•2}/{3•2}+ {1•3}/{2•3}= 3 + 2/6+ 3/6= 3 + 5/6= 3 5/6$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2818ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5249WIADOMOŚCI
NAPISALIŚCIE741KOMENTARZY
komentarze
... i7432razy podziękowaliście
Autorom