Język polski

Między nami 5. Zeszyt ćwiczeń cz. 2 (Zeszyt ćwiczeń, GWO)

Na podstawie poniższego tekstu sporządź 4.5 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Język polski

Na podstawie poniższego tekstu sporządź

7
 Zadanie

8
 Zadanie
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Gość

17 kwietnia 2018
Zad 7 str 71
user profile image
Iwona

16970

17 kwietnia 2018

@Gość Rozwiązanie tego zadania znajduje się już na odrabiamy.pl. Jest ono dostępne tylko dla użytkowników wspierających stronę. Jeżeli chcesz je zobaczyć, wejdź na

Autorzy: Agnieszka Łuczak, Anna Murdzek
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Iwona

16962

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kwadrat

Kwadrat to prostokąt, który ma wszystkie boki jednakowej długości.

Przekątne kwadratu są prostopadłe, mają równą długość i wspólny środek. Przekątne tworzą z bokami kwadratu kąt 45°.

Długość jednego boku jest wymiarem kwadratu.

kwadrat
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie