Od wyróżnionych wyrazów utwórz - Zadanie 5: Słowa na start! 4 - strona 15
Język polski
Wybierz książkę
Od wyróżnionych wyrazów utwórz 4.33 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Język polski

Od wyróżnionych wyrazów utwórz

4
 Zadanie

5
 Zadanie

6
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Anna Klimowicz, Krystyna Brząkalik
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Iwona

24996

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Logarytm mnożenia

Możemy mnożyć liczby znajdujące się w liczbie logarytmowej, dzięki czemu rozbijemy go na dwa osobne. Z logarytmami jak z pierwiastkami, nie każdy da się policzyć, ale możemy je rozbić.

Wzór na dodawanie logarytmów:

$log_{a}(b×c)=log_{a}b+log_{a}c$
 

Przykład:

$log_{2}6=$

Niestety nie znajdziemy powyższego logarytmu, więc 6 musimy rozbić na mnożenie:

$log_{2}(2×3)=$

Zgodnie z wzorem, zamieniamy na dodawanie:

$log_2(2×3)=log_2 2+log_2 3$

Pierwszy z nich jest możliwy do obliczenia, zaś drugi musimy pozostawić

$log_2 2+log_2 3=1+log_2 3$, bo $2^1=2$ (stąd ta jedynka zamiast $log_2 2$)
 
Wykres funkcji

Przejdźmy zatem do tego co nas zapewne czeka na sprawdzianach i na maturze. Sprawdzenie czy wykres jest funkcją.

Wykres jest funkcją kiedy dowolną pionową linię układu współrzędnych wykres przetnie tylko raz. Jak to najłatwiej zobaczyć? Za pomocą linijki!

Mamy taki oto wykres:

wyk1

Załóżmy, że gruby niebieski pasek będzie moją linijką. Zaczynamy od lewej skrajnej części układu:

wyk2

A następnie przesuwamy w prawą stronę patrząc czy nasz pasek jest gdzieś przecinany więcej niż raz równocześnie.

Pokażę tu kilka faz:

wyk3

Przecina tylko raz

wyk4

Tu też

wyk5

Koniec sprawdzania, wykres jest funkcją.

Weźmy inny wykres:

wyk11

Przesuńmy naszą „linijkę”:

wyk12 
Nadal przecina raz

wyk13

Jednak tutaj już dwa razy, nie jest to funkcja.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom