uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy
wykup to konkretne rozwiązanie
Przy wykonywaniu rysunków niektórych przedmiotów lub sporządzaniu map, planów musimy zmniejszyć rzeczywiste wymiary przedmiotów, aby rysunki zmieściły się na kartce. Są też rzeczy niewidoczne dla oka, które obserwujemy za pomocą mikroskopu, wówczas rysunki przedstawiamy w powiększeniu.
W tym celu stosujemy pewną skalę. Skala określa, ile razy dany obiekt został pomniejszony lub powiększony. Rozróżniamy zatem skale zmniejszające i zwiększające.
Skala 1:2 („jeden do dwóch”) oznacza, że przedstawiony obiekt jest dwa razy mniejszy od rzeczywistego, czyli jego wymiary są dwa razy mniejsze od rzeczywistych.
Skala 2:1 („dwa do jednego”) oznacza, że przedstawiony obiekt jest dwa razy większy od rzeczywistego, czyli jego wymiary są dwa razy większe od rzeczywistych.
Skala 1:1 oznacza, że przedstawiony obiekt jest taki sam jak rzeczywisty.
Przykład:
Prostokąt środkowy jest wykonany w skali 1:1. Mówimy, że jest naturalnej wielkości. Prostokąt po lewej stronie został narysowany w skali 1:2, czyli jego wszystkie wymiary zostały zmniejszone dwa razy. Prostokąt po prawej stronie został narysowany w skali 2:1, czyli jego wszystkie wymiary zostały zwiększone dwa razy.
Przykłady na odczytywanie skali:
Plan to obraz niewielkiego obszaru, terenu, przedstawiony na płaszczyźnie w skali. Plany wykonuje się np. do przedstawienia pokoju, mieszkania, domu, rozkładu ulic w osiedlu lub mieście.
Mapa to podobnie jak plan obraz obszaru, tylko większego, przedstawiony na płaszczyźnie w skali (mapa musi uwzględniać deformację kuli ziemskiej). Mapy to rysunki terenu, kraju, kontynentu.
Skala mapy
Na mapach używa się skali pomniejszonej np. 1:1000000. Oznacza to, że 1 cm na mapie oznacza 1000000 cm w rzeczywistości (w terenie).
Dodawanie ułamków o jednakowych mianownikach – dodajemy liczniki, a mianownik pozostawiamy bez zmian.
Przykład:
Gdy w wyniku dodania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości (jak w przykładzie powyższym).
Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę (jak w przykładzie poniżej).
Dodawanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy dodawanie.
Przykład:
Dodawanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.
I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy dodawanie ułamków o jednakowych mianownikach.
$$2 1/3+ 1 1/3= {2•3+1}/3+{1•3+1}/3=7/3+4/3={11}/3=3 2/3$$II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.
Przykład:
$$2 1/3+ 1 1/3= 2 + 1/3+ 1 + 1/3= 3 + 2/3= 3 2/3$$Dodawanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.
I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy dodawanie.
$$2 1/3+ 1 1/2= {2•3+1}/3+{1•2+1}/2=7/3+3/2={7•2}/{3•2}+{3•3}/{2•3}={14}/6 + 9/6={23}/6=3 5/6$$II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.
Przykład:
$$2 1/3+ 1 1/2= 2 + 1/3+ 1 + 1/2= 3 + 1/3+ 1/2= 3 + {1•2}/{3•2}+ {1•3}/{2•3}= 3 + 2/6+ 3/6= 3 + 5/6= 3 5/6$$