Podaj znaczenia... - Zadanie 3: Między nami 4 - strona 149
Język polski
Wybierz książkę
Podaj znaczenia... 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Język polski
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) królewskie obiady - wystawne obiady

królewska uczta - wystawne spotkanie

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Agnieszka Łuczak, Anna Murdzek
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile

Sylwia

26987

Nauczyciel

Wiedza
Wyznaczanie prostych równoległych i prostopadłych przechodzących przez dany punkt
W tym rozdziale będziemy operować tylko i wyłącznie na postaciach kierunkowych, ponieważ w większości takie pojawiają się na testach czy maturze. Wzory ogólne są omówione w dziale poświęconym prostej przechodzącej przez dwa zadane punkty.

Przypomnienie:
Mając wzory dwóch prostych $y=a_1x+b_1$ oraz $y=a_2x+b_2$ proste są:
Równoległe jeśli $a_1=a_2$
Prostopadłe jeśli $a_1×a_2=-1$

Naszym jedynym dodatkowym utrudnieniem w tym dziale jest wprowadzenie punktu. Punkt będzie miał współrzędne (x,y) i to właśnie na tych zmiennych będziemy operować w naszych wzorach.

Aby w ogóle mówić o szukaniu punktu musimy mieć już znalezioną prostą prostopadłą/równoległą do danej, zazwyczaj wtedy znamy już współczynnik $a$, $b$ może być dowolną liczbą, więc jest nieznane. Znane zmienne ze wzoru $y=ax+b$ to $a$ oraz, gdy mamy dany punkt, przez który przechodzi ta prosta, także $x$ i $y$.

Na razie nadal nie znamy $b$, ale skoro prosta przechodzi przez konkretny punkt, $b$ już nie może być dowolne (w naszym punkcie znamy x i y). Pozostaje nam obliczyć to $b$, co będzie łatwe, bo mamy równanie z jedną niewiadomą.

Przykład:
Znaleźć prostą równoległą do y=3x-8 przechodzącą przez punkt A(1,5).

Zacznijmy od najbardziej nieznanego wzoru szukanej prostej:
$y=ax+b$
Zajmijmy się zmienną a, szukamy prostej równoległej zatem:
$a_1=a=3$

Uzupełnijmy nasz wzór:
$y=3x+b$

Teraz mamy punkt A(1,5)
$x=1$
$y=5$

Uzupełnijmy wzór o kolejne zmienne:
$5=3×1+b$

Pozostaje obliczyć b:
$5=3+b$
$b=2$

Uzupełnijmy wzór zyskując wzór ostateczny na szukaną prostą:
$y=3x+2$
To nie przypadek, że dostaliśmy taki sam wzór jak dla wyjściowej prostej - gdy dwie proste są do siebie równoległe i przechodząą przez co najmniej 1 wspólny punkt, to są identyczne!
Kolejność wykonywania działań

Przed rozpoczęcie wykonywania działań musimy pamiętać w jakiej kolejności to robić:

  1. Potęgi i nawiasy
  2. Mnożenie i dzielenie
  3. Dodawanie, odejmowanie
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom