Język polski

Słowa z uśmiechem 6. Podręcznik część 2. Nauka o języku. Ortografia (Zeszyt ćwiczeń, WSiP)

Odpowiedz pełnymi zdaniami... 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Język polski

Odpowiedz pełnymi zdaniami...

4
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Eni

06-03-2017
witam! nie zgłaszam błędu lecz literówkę,którą należy poprawić gdyż jakieś dziecko przepisze z błędem,dostanie złą ocene i da skargę na tą str.. TA STRONA JEST PRZYDATNA. pozdrawiam ♥
user profile image
Eni

07-03-2017
@Odrabiamy.pl Nie ma za co ;) Również pozdrawiam. :)
user profile image
Sylwia

5375

07-03-2017
@Eni Cześć, literówka poprawiona. Dziękujemy za zgłoszenie. Pozdrawiamy!
Informacje
Słowa z uśmiechem 6. Podręcznik część 2. Nauka o języku. Ortografia
Autorzy: Ewa Horwath, Anita Żegleń
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Sylwia

5374

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie