Do podanych sylab przyporządkuj... - Zadanie 13: Teraz polski 5 - strona 99
Język polski
Wybierz książkę
Do podanych sylab przyporządkuj... 5.0 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Język polski

Do podanych sylab przyporządkuj...

11
 Zadanie
12
 Zadanie

13
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Kom-pot                                 Ką-piel                         Kon-centrat

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 5 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
5 szkoły podstawowej
Informacje
Autorzy: Agnieszka Marcinkiewicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Sylwia

26967

Nauczyciel

Wiedza
Rodzaje ułamków

W ułamkach zwykłych występują również specjalne rodzaje ułamków.

  1. Ułamek niewłaściwy
    W ułamku niewłaściwym góra jest większa od dołu, czyli licznik jest większy od mianownika. Przykłady: $7/4$, $8/3$, $4/2$.

    Ułamek niewłaściwy możemy zapisać w postaci mieszanej.

  2. Ułamek mieszany
    Jest on połączeniem części ułamkowej i całkowitej np.: $3{3}/{4}$ . Możemy swobodnie przechodzić z ułamków niewłaściwych do mieszanych oraz na odwrót.

  3. Ułamek dziesiętny
    Ułamki dziesiętne to ułamki zwykłe o mianowniku będącym potęgą liczby 10 (10,100,1000,1000000 itd.)

 
Ułamki zwykłe

O ułamkach uczyliśmy się już w szkole podstawowej.

Oznaczamy nimi w matematyce „część” czegoś. 

 

Ułamek składa się z licznika, mianownika oraz kreski ułamkowej.

ułamek

Wyrażenie postaci `a/b` , gdzie a i b to liczby naturalne oraz b jest różne od zera, nazywamy ułamkiem zwykłym.

Ciekawostka

Współczesny sposób zapisu ułamków pochodzi od matematyków hinduskich, którzy zapisywali licznik i mianownik nie używając kreski rozdzielającej. Dodanie kreski rozdzielającej zawdzięczamy Arabom tłumaczącym dzieła Hindusów. W Europie znane do dziś oznaczenie ułamków jako pierwszy w swoich pracach publikuje włoski matematyk Fibonacci.

Ułamki to inny zapis dzielenia liczb naturalnych.
Iloraz liczb naturalnych `a:b` możemy zapisać w postaci ułamka `a/b` . Dzielna `a`  jest licznikiem ułamka, dzielnik `b`  różny od zera jest mianownikiem, a kreska ułamkowa zastępuje znak dzielenia: `a:b=a/b` , gdzie b jest różne od zera ($b≠0$).

Przykłady:

  • `9/2=9:2`  

  • `2/3=2:3`  


Odwrotność ułamka

Jeżeli dany jest ułamek `a/b`, to ułamek `b/a` nazywamy odwrotnością ułamka `a/b` , gdzie `a!=0 \ "i" \ b!=0` .

Przykłady

  • odwrotnością liczby `3/4`  jest ułamek `4/3` ;  

  • odwrotnością liczby `4=4/1`  jest ułamek `1/4`,

  • odwrotnością ułamka  `1/9` jest liczba `9/1=9`


Ułamek w życiu codziennym

W życiu codziennym ułamek jest stosowany bardzo często, głównie oznacza część (kawałek) jakiejś całości.

Przykład:

  • Gdy podzielimy pizzę na 7 kawałków i zabierzemy 3 kawałki, to będziemy mieli `3/7`  („trzy siódme”) pizzy.

    Ogólnie:

    `a/b`   → jeśli mamy jakiś przedmiot (np. jabłko, tort, pizzę, czekoladę), to mianownik `b`  mówi na ile części go dzielimy, a licznik `a`  – ile takich części zabieramy.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom