Na podstawie zdania... - Zadanie 11: Teraz polski 5 - strona 93
Język polski
Wybierz książkę
Na podstawie zdania... 4.4 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Język polski

Na podstawie zdania...

10
 Zadanie

11
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 5 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
5 szkoły podstawowej
Informacje
Autorzy: Agnieszka Marcinkiewicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Sylwia

26963

Nauczyciel

Wiedza
Trójkąty

Trójkąty dzielimy na:

  • ostrokątne (wszystkie kąty trójkąta są kątami ostrymi),

  • prostokątne (jeden z kątów trójkąta jest kątem prostym),

  • rozwartokątne (jeden z kątów trójkąta jest kątem rozwartym),

  • równoboczne (wszystkie boki trójkąta mają taką samą długość),

  • równoramienne (dwa boki - ramiona, mają taką samą długość), 

  • różnoboczne (każdy bok trójkąta ma inną długość).


Suma miar kątów w dowolnym trójkącie jest równa 180°.

Nierówność trójkąta:

Boki dowolnego trójkąta muszą spełniać poniższe nierówności:

  1. `a+b \ > \ c` 

  2. `a+c \ > \ b` 

  3. `b+c \ > \ a`   

trojkat

Aby stwierdzić, czy z trzech odcinków można zbudować trójkąt wystarczy sprawdzić, czy suma długości dwóch krótszych odcinków jest większa od długości najdłuższego odcinka.


Trójkąt równoramienny

W trójkącie równoramiennym kąty przy podstawie mają równe miary, a ramiona mają taką samą długość. 


Trójkąt równoboczny: 

W trójkącie równobocznym wszystkie kąty mają równe miary wynoszące 60o, a boki mają równe długości. 


Trójkąt prostokątny: 

 

Pole trójkąta: 

Pole trójkąta obliczamy ze wzoru:

`P=(a*h)/2` 

`a`   - długość boku

`h`   - długość wysokości opuszczonej na ten bok

Oczliczenia procentowe

Słowo procent (symbol %) pochodzi od łacińskiego wyrażenia pro centum oznaczającego na sto. Można więc powiedzieć że procent to nic innego jak ułamek mający w liczniku daną liczbę ( dany procent ), a w mianowniku liczbę 100.

$ p%=p/100 $
 

Przykłady:

  • $13%= 13/{100} $
  • $75%= 75/{100}=3/4 $
  • $0,78=78% $

Czasami pojawia się również pojęcie promil (symbol ‰). Promil jest bardzo podobny do procentu tylko zamiast na sto oznacza na tysiąc.

$ p‰=p/{1000} $
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom