Przyjrzyj się ilustracji... - Zadanie 6: Teraz polski 5 - strona 91
Język polski
Wybierz książkę
Przyjrzyj się ilustracji... 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Język polski

Przyjrzyj się ilustracji...

5
 Zadanie

6
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Ilustracja przedstawia dzieci, które bawią się na śniegu.

 

1. Ilustracja przedstawia zimę.

Związek główny: Ilustracja przedstawia

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 5 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
5 szkoły podstawowej
Informacje
Autorzy: Agnieszka Marcinkiewicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Sylwia

26987

Nauczyciel

Wiedza
Pole całkowite prostopadłościanu
Pole obejmuje całą powierzchnię, jaką da się zobaczyć zakładając, że możemy obracać graniastosłupem jak chcemy. To tak jakbyśmy wzięli kostkę do gry: obracając ją widzimy w sumie 6 ścianek. Tak samo pudełko, mające dno, wieczko i 4 boki - ponownie 6 ścian.

Musimy policzyć powierzchnię każdej z 6 części i sumować.
Ogólny wzór na pole powierzchni graniastosłupa:

$P_c=2P_p+P_b$

Gdzie $P_p$ to pole podstawy a $P_b$ powierzchni bocznej.

Przykład:

Oblicz pole prostopadłościanu o wymiarach podstawy $a=7$ , $b=5$ i wysokości $c=10$.

Narysujmy to sobie:

img05

Mamy wzór:

$P_c=2P_p+P_b$

Podstawą jest prostokąt o wymiarach $7x5$, więc $P_p=7×5=35$

$P_c=2×35+P_b=70+P_b$

Obliczyliśmy już dwie ściany, bo pomnożyliśmy podstawę razy dwa.

Zostały nam 4 ściany czyli $P_b$

4 ściany tworzą prostokąty, wysokość zostaje taka sama, ale podstawa się zmienia - są to prostokąty o wymiarach:

$7×10$,

$5×10$,

$7×10$,

$5×10$

No to sumujemy te pola!

$P_b=2×7×10+2×5×10=140+100=240$

Pozostaje obliczyć pole całkowite:

$P_c=2P_p+P_b=70+240=310$
 
Wykres funkcji

Przejdźmy zatem do tego co nas zapewne czeka na sprawdzianach i na maturze. Sprawdzenie czy wykres jest funkcją.

Wykres jest funkcją kiedy dowolną pionową linię układu współrzędnych wykres przetnie tylko raz. Jak to najłatwiej zobaczyć? Za pomocą linijki!

Mamy taki oto wykres:

wyk1

Załóżmy, że gruby niebieski pasek będzie moją linijką. Zaczynamy od lewej skrajnej części układu:

wyk2

A następnie przesuwamy w prawą stronę patrząc czy nasz pasek jest gdzieś przecinany więcej niż raz równocześnie.

Pokażę tu kilka faz:

wyk3

Przecina tylko raz

wyk4

Tu też

wyk5

Koniec sprawdzania, wykres jest funkcją.

Weźmy inny wykres:

wyk11

Przesuńmy naszą „linijkę”:

wyk12 
Nadal przecina raz

wyk13

Jednak tutaj już dwa razy, nie jest to funkcja.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom