Na podstawie odpowiednich fragmentów określ - Zadanie 8: Czarowanie słowem 6 - strona 349
Język polski
Czarowanie słowem 6 (Podręcznik, WSiP)
Na podstawie odpowiednich fragmentów określ 4.38 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Język polski

Na podstawie odpowiednich fragmentów określ

2
 Zadanie
5
 Zadanie
6
 Zadanie

8
 Zadanie

9
 Zadanie
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 6 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
6 szkoły podstawowej
Informacje
Autorzy: Kania Agnieszka, Kwak Karolina. Majchrzak-Broda Joanna
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Iwona

24950

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Jednostki objętości

Objętość podaje się w jednostkach sześciennych.

Podstawowe jednostki objętości to:

  • milimetr sześcienny (`"mm"^3`),

  • centymetr sześcienny (`"cm"^3`),

  • decymetr sześcienny (`"dm"^3`),

  • metr sześcienny (`"m"^3`). 


Objętość różnego rodzaju płynów wyraża się w: 

  • mililitrach,  `1 \ "ml"=1 \ "cm"^3` 

  • litrach,   `1 \ "l"=1 \ "dm"^3`   

    `1 \ "l"=1000 \ "ml"`  

  • hektolitrach,  `1 \ "hl"=100 \ "l"`  

 

Przeliczanie jednostek:

`1 \ "cm"=10 \ "mm"` 

Czyli: 

`1 \ "cm"^3=1 \ "cm"*1 \ "cm"*1 \ "cm"=10 \ "mm"*10 \ "mm"*10 \ "mm"=1000 \ "mm"^3` 
  

`1 \ "dm"=10 \ "cm"` 

Czyli: 

`1 \ "dm"^3=1 \ "dm"*1 \ "dm"*1 \ "dm"=10 \ "cm"*10 \ "cm"*10 \ "cm"=1000 \ "cm"^3`    


`1 \ "m"=100 \ "cm"` 

Czyli: 

`1 \ "m"^3=1 \ "m"*1 \ "m"*1 \ "m"=100 \ "cm"*100 \ "cm"*100 \ "cm"=1 \ 000 \ 000 \ "cm"^3`   


`1 \ "l"=1 \ "dm"^3=1000 \ "cm"^3=1000 \ "ml"`  


Analogicznie jak powyżej możemy przeliczyć również inne jednostki. 

Mnożenie i dzielenie ułamków

Mnożenie i dzielenie to po dodawaniu i odejmowaniu najbardziej popularne działania stosowane we wszystkich dziedzinach nauki.


Mnożenie i dzielenie ułamków zwykłych

Aby pomnożyć dwa ułamki zwykłe należy obliczyć iloczyn ich liczników oraz mianowników. 

Aby podzielić dwa ułamki zwykłe należy dzielną pomnożyć razy odwrotność dzielnika.  

Przykłady:

  • `4/5*3/7=(4*3)/(5*7)=12/35` 

  • `1 2/5*4/9=7/5*4/9=28/45` 

  •  `4/7:5/8=4/7*8/5=32/35` 

  • `2 4/5: 3/7=14/5:3/7=14/5*7/3=98/15=6 8/15`     


Mnożenie i dzielenie ułamków dziesiętnych 

Aby pomnożyć dwa ułamki dziesiętne chwilowo pomijamy przecinki i wykonujemy działanie na liczbach naturalnych.

Następnie obliczamy ile łącznie cyfr znajduje się po przecinku w obu czynnikach. Tyle samo cyfr musi znaleźć się po przecinku w otrzymanym wyniku. 

Aby podzielić dwa ułamki dziesiętne należy w dzielnej i dzielniku przesunąć przecinek o tyle miejsc w prawo, aby dzielnik był liczbą naturalną. 

Przykłady:

  • `3,4*1,21=4,114` 

  • `5,7*1,42=8,094`  

  • `3,2:0,8=32:8=4`  

  • `3,55:0,5=35,5:5=7,1`  
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom