Przyjrzyj się ilustracji przedstawiającej krajobraz - Zadanie 2: Czarowanie słowem 6. Zeszyt ćwiczeń cz 1 - strona 97
Język polski
Czarowanie słowem 6. Zeszyt ćwiczeń cz 1 (Zeszyt ćwiczeń, WSiP)
Przyjrzyj się ilustracji przedstawiającej krajobraz 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Język polski

Przyjrzyj się ilustracji przedstawiającej krajobraz

2
 Zadanie

Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 6 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
6 szkoły podstawowej
Informacje
Autorzy: Kania Agnieszka, Kwak Karolina. Majchrzak-Broda Joanna
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Iwona

24996

Nauczyciel

Nauczycielka w liceum z 5-letnim doświadczeniem. Kocham gotowanie i francuską literaturę.

Wiedza
Nierówności wymierne
Skoro zgłębiliśmy już temat nierówności wielomianowych, możemy zabrać się za ich rozwinięcie - nierówności wymierne. Tak naprawdę wymagają one jedynie jednego "kroku" więcej i wszystko dalej sprowadza się do rozwiązywania nierówności wielomianowych.

Najprościej będzie zobaczyć to na przykładzie:

${3x-2}/{4x-7}$ > ${1-3x}/{5-4x}$

1) Pierwszą rzeczą, którą robimy po zobaczeniu takiej nierówności, jest przeniesienie wszystkich składników na jedną stronę.

${3x-2}/{4x-7} - {1-3x}{5-4x}$ > $0$

2) Sprowadzamy oba ułamki do wspólnego mianownika:

${(3x-2)(5-4x)}/{(4x-7)(5-4x)} - {(1-3x)(4x-7)}/{(4x-7)(5-4x)}$ > $0$

3) Dodajemy ułamki i rozpisujemy ich liczniki

${(3x-2)(5-4x) - (1-3x)(4x-7)}/{(4x-7)(5-4x)}$ > $0$
${-2x-3}/{(4x-7)(5-4x)}$ > $0$

4) Teraz następuje najważniejszy krok: zamieniamy iloraz wielomianów na ich iloczyn. Możemy to zrobić, ponieważ taka operacja nie zmienia znaku lewej strony. Otrzymujemy więc nierówność:

$(-2x-3)(4x-7)(5-4x)$ > $0$

5) Następnym krokiem jest wyznaczenie miejsc zerowych każdego z czynników oraz sprawdzenie, czy przy najwyższej potędze $x$-a jest znak dodatni, czy ujemny:

$-2x-3 = 0$
$x = -{3}/{2}$
$4x-7 = 0$
$x = -{7}/{4}$
$-4x+5 = 0$
$x = -{5}/{4}$

Teraz sprawdzenie znaku:

$(-2)×4×(-4) = 32$ > $0$

6) Mając miejsca zerowe i znając znak współczynnika możemy narysować schematyczny wykres wielomianu i odczytać z niego przedziały, gdzie jest on dodatni:

1

Jak widać nierówność jest prawdziwa dla $x$-ów leżących w przedziałach $(-{3}/{2}, {5}/{4})$ oraz $({7}/{4}, ∞)$.

Metoda ta powinna zadziałać we wszystkich zadaniach z nierówności wymiernych, które mogłyby pojawić się na maturze.

Warto jeszcze tylko dodać, że krok 3 mógł rozwinąć licznik do wielomianu wyższego stopnia - na przykład funkcji kwadratowej. Należałoby wtedy po prostu znaleźć jej pierwiastki i zapisać w postaci iloczynu - dalsze kroki byłyby takie same.
Działania na granicach
Analogicznie do granic ciągów, na granicach funkcji także możemy wykonywać działania artytmetyczne - na przykład jeśli granicą funkcji $f(x)$ jest $A$, a granicą $g(x)$ - $B$, to granicą funckcji $h(x) = f(x) + g(x)$ będzie po prostu $A+B$.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom