Zaznacz właściwą informację. - Zadanie 2: Meine Deutschtour 8 - strona 81
Język niemiecki
Wybierz książkę
Zaznacz właściwą informację. 4.5 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Język niemiecki

Zaznacz właściwą informację.

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie

1. Herzlich willkommen zu unserer Modenschau!
Serdecznie witamy na naszym pokazie mody!
B. 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do rozwiązania undefined
Adrian

9 stycznia 2019
dzieki
komentarz do rozwiązania undefined
Kornelia

1 stycznia 2019
Dzięki :)
komentarz do zadania undefined
Jacek

13 grudnia 2018
dzieki :)
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Małgorzata Kosacka
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326733185
Autor rozwiązania
user profile

Ola

10507

Nauczyciel

Jestem tu po to, żeby pokazać WAM, że język niemiecki wcale nie jest taki straszny :)

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $1/{10}= 0,1$
  • $2/{100}= 0,02$
  • ${15}/{100}= 0,15$
  • $3/{1000}= 0,003$
  • ${25}/{10}= 2,5$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Kąty

Kąt to część płaszczyzny ograniczona dwiema półprostymi o wspólnym początku, wraz z tymi półprostymi.

Półproste nazywamy ramionami kąta, a ich początek – wierzchołkiem kąta.

kat-glowne
 


Rodzaje kątów:

  1. Kąt prosty – kąt, którego ramiona są do siebie prostopadłe – jego miara stopniowa to 90°.

    kąt prosty
  2. Kąt półpełny – kąt, którego ramiona tworzą prostą – jego miara stopniowa to 180°.
     

    kąt pólpelny
     
  3. Kąt ostry – kąt mniejszy od kąta prostego – jego miara stopniowa jest mniejsza od 90°.
     

    kąt ostry
     
  4. Kąt rozwarty - kąt większy od kąta prostego i mniejszy od kąta półpełnego – jego miara stopniowa jest większa od 90o i mniejsza od 180°.

    kąt rozwarty
  5. Kąt pełny – kąt, którego ramiona pokrywają się, inaczej mówiąc jedno ramię tego kąta po wykonaniu całego obrotu dookoła punktu O pokryje się z drugim ramieniem – jego miara stopniowa to 360°.
     

    kat-pelny
     
  6. Kąt zerowy – kąt o pokrywających się ramionach i pustym wnętrzu – jego miara stopniowa to 0°.

    kat-zerowy
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2834ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6080WIADOMOŚCI
NAPISALIŚCIE758KOMENTARZY
komentarze
... i7807razy podziękowaliście
Autorom