Wysłuchaj dwukrotnie nagrania... - Zadanie 3: Wir smart 3. Smartbuch - strona 117
Język niemiecki
Wybierz książkę
Wysłuchaj dwukrotnie nagrania... 4.5 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Język niemiecki

Wysłuchaj dwukrotnie nagrania...

2
 Zadanie
2
 Zadanie

3
 Zadanie

Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Giorgio Motta
Wydawnictwo: Klett
Rok wydania:
ISBN: 9788380632943
Autor rozwiązania
user profile

Ewa

6989

Korepetytor

Wiedza
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$P_p$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $P_1$, $P_2$ i $P_3$ to pola ścian prostopadłościanu.

$P_p=2•P_1+2•P_2+2•P_3$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$P_p = 2•a•b + 2•b•c + 2•a•c$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $P_p=6•P$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $P_p = 6•a•a = 6•a^2$ (a - bok sześcianu).

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3718ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5710WIADOMOŚCI
NAPISALIŚCIE835KOMENTARZY
komentarze
... i8916razy podziękowaliście
Autorom