Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.
Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.
Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.
Przykład:
Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:
$$3/5=9/{15}={27}/{45}=...$$Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.
Przykład:
Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:
$$8/{16}=4/8=2/4=1/2$$Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.
Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.
W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.
Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.
Przykład:
Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.
$$ P=2 cm•4 cm=8 cm^2 $$
Pole tego prostokąta jest równe 8 $$cm^2$$.