Lies die Presseartikel noch einmal... - Zadanie 27b: Motive Deutsch 2 Neu. Zakres podstawowy i rozszerzony - strona 89
Język niemiecki
Motive Deutsch 2 Neu. Zakres podstawowy i rozszerzony (Podręcznik, WSiP )
Lies die Presseartikel noch einmal... 4.4 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Język niemiecki

Lies die Presseartikel noch einmal...

27a
 Zadanie

27b
 Zadanie

Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Alina Dorota Jarząbek, Danuta Koper
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302156014
Autor rozwiązania
user profile

Ewa

6786

Korepetytor

Wiedza
średnia ważona

Średnia ważona różni się nieco od arytmetycznej. Oprócz samej sumy liczb do każdej z nich mamy przypisaną tzw. Wagę, która mówi nam jak bardzo ważna jest w naszej średniej dana liczba - częsty proceder na studiach czy w liceach.

Przykład:

kolokwium "waży" 30% czyli 0,3
egzamin "waży" 70% czyli 0,7

Wszystkie wagi muszą dać w sumie 1!
$0,3+0,7=1$

Załóżmy, że dostaliśmy z kolokwium ocenę 3, a z egzaminu ocenę 5, według średniej arytmetycznej mamy czyste 4. Jak to wygląda przy ważonej?

Waga oceny z kolokwium to:
$0,3$

Więc ocena to:
$0,3×3=0,9$

Waga z egzaminu: 0,7
Ocena:
$0,7×5=3,5$

Zatem razem mamy $3,5+0,9=4,4≈4,5$

Średnią ważoną stosują nawet nauczyciele matematyki, dlatego nawet 5 z kartkówek nie ratuje nas przed dwóją ze sprawdzianu i ocena jest niższa.

Ostrosłup

Ostrosłupem nazywamy taki wielościan, którego jedna ściana jest dowolnym wielokątem (podstawa), a pozostałe ściany (ściany boczne) są trójkątami o wspólnym wierzchołku.

img07
 

Ostrosłupy również mogą być:

  • proste - wtedy każda krawędź boczna jest równej długości,
  • prawidłowe - wtedy podstawą jest wielokąt foremny, a jego spodek wysokości pokrywa się ze środkiem okręgu opisanego na jego podstawie. Tak jak wcześniej, wszystkie ostrosłupy prawidłowe są proste (ale nie odwrotnie).

Wysokością ostrosłupa nazywamy najkrótszy odcinek, łączący wierzchołek z płaszczyzną podstawy. Na czerwono został oznaczony kąt nachylenia krawędzi ściany do podstawy.

img08
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom