Schreib... - Zadanie 3: Motive Deutsch 1 Neu. Zakres podstawowy - strona 103
Język niemiecki
Wybierz książkę
Schreib... 5.0 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Język niemiecki
Zadanie indywidualne

To zadanie musi być rozwiązane indywidualnie przez każdego ucznia.

Może wymagać:

  • odniesienia się do indywidualnych doświadczeń
  • praca w grupie
  • praca na lekcji
Tego typu zadań aktualnie nie rozwiązujemy.

DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Alina Dorota Jarząbek, Danuta Koper
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302149078
Autor rozwiązania
user profile

Ewa

6944

Korepetytor

Wiedza
Największy wspólny dzielnik (NWD)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6.
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.

  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12.
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.


Największy wspólny dzielnik 
dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWD dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn wspólnych czynników (zaznaczonych czynników).  

Przykład:

Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2663ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6594WIADOMOŚCI
NAPISALIŚCIE742KOMENTARZY
komentarze
... i8391razy podziękowaliście
Autorom