Wer hat was... - Zadanie 11: Kompass neu 2 - strona 84
Język niemiecki
Kompass neu 2 (Zeszyt ćwiczeń, PWN)
Wer hat was... 4.4 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język niemiecki

1. Nina

2. Alexandra

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: Elżbieta Reymont, Agnieszka Sibiga, Małgorzata-Wiejak
Wydawnictwo: PWN
Rok wydania:
Autor rozwiązania
user profile

Ola

10015

Nauczyciel

Jestem tu po to, żeby pokazać WAM, że język niemiecki wcale nie jest taki straszny :)

Wiedza
Diagramy procentowe

Aby przedstawić dane liczbowe zapisane w procentach najlepiej jest posługiwać się diagramami procentowymi.

Diagram kołowy i słupkowy to dwa najbardziej popularne rodzaje diagramów.

  • Diagram kołowy

    diagram_kolowy


    Z przykładowego diagramu powyżej można odczytać ile osób głosowało na poszczególnych kandydatów.
    Widzimy, że na pana A głosowało 59% osób. Można więc powiedzieć, że gdyby w głosowaniu brało udział 100 osób to 59 z nich głosowałoby na pana A.
    Dalej widzimy że na panów B, C i D głosowało odpowiednio 23%, 10% i 9%.

  • Diagram słupkowy

    diagram_slupkowy

    Z powyższego diagramu można odczytać jaki procent osób danego miasta stanowią kobiety a jaki mężczyźni. 
    W mieście A mężczyźni stanowią 57% mieszkańców a kobiety 43% mieszkańców. Można więc powiedzieć, że jeśli w mieście A jest 100 mieszkańców, to 57 z nich to mężczyźni a 43 to kobiety.
    Ta sama zasada odnosi się do miast B i C.
Koła i okręgi

Liczba $π$ (pi) to liczba niewymierna, która określa stosunek długości okręgu do długości średnicy. Służy do obliczania pola koła oraz długości okręgu. W przybliżeniu wynosi 3,14.

 

Długość okręgu:

$ L=dπ=2πr $

L - długość okręgu

d- średnica okręgu

r- promień okręgu

 

Pole koła:

$P=πr^2$

P- pole koła

r- promień koła

Długość łuku:

$L=α/{360°} 2πr$

α- kąt środkowy wycinka okręgu

 

Pole wycinka koła:

$P=α/{360°} πr^2 $

α- kąt środkowy wycinka koła

 

Styczna oraz punkt styczności:

styczna_mavcbw
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom