Hermann hat einen neuen... - Zadanie 31: Kompass neu 2 - strona 68
Język niemiecki
Kompass neu 2 (Zeszyt ćwiczeń, PWN)
Hermann hat einen neuen... 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język niemiecki

Hermann hat einen neuen...

30
 Zadanie

31
 Zadanie

32
 Zadanie

Hermann stellt den Computer neben/unter den Schreibtisch. Der Computer steht neben/unter dem Schreibtisch.

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: Elżbieta Reymont, Agnieszka Sibiga, Małgorzata-Wiejak
Wydawnictwo: PWN
Rok wydania:
Autor rozwiązania
user profile

Ola

10015

Nauczyciel

Jestem tu po to, żeby pokazać WAM, że język niemiecki wcale nie jest taki straszny :)

Wiedza
Jednostki objętości

Objętość podaje się w jednostkach sześciennych.

Podstawowe jednostki objętości to:

  • milimetr sześcienny (`"mm"^3`),

  • centymetr sześcienny (`"cm"^3`),

  • decymetr sześcienny (`"dm"^3`),

  • metr sześcienny (`"m"^3`). 


Objętość różnego rodzaju płynów wyraża się w: 

  • mililitrach,  `1 \ "ml"=1 \ "cm"^3` 

  • litrach,   `1 \ "l"=1 \ "dm"^3`   

    `1 \ "l"=1000 \ "ml"`  

  • hektolitrach,  `1 \ "hl"=100 \ "l"`  

 

Przeliczanie jednostek:

`1 \ "cm"=10 \ "mm"` 

Czyli: 

`1 \ "cm"^3=1 \ "cm"*1 \ "cm"*1 \ "cm"=10 \ "mm"*10 \ "mm"*10 \ "mm"=1000 \ "mm"^3` 
  

`1 \ "dm"=10 \ "cm"` 

Czyli: 

`1 \ "dm"^3=1 \ "dm"*1 \ "dm"*1 \ "dm"=10 \ "cm"*10 \ "cm"*10 \ "cm"=1000 \ "cm"^3`    


`1 \ "m"=100 \ "cm"` 

Czyli: 

`1 \ "m"^3=1 \ "m"*1 \ "m"*1 \ "m"=100 \ "cm"*100 \ "cm"*100 \ "cm"=1 \ 000 \ 000 \ "cm"^3`   


`1 \ "l"=1 \ "dm"^3=1000 \ "cm"^3=1000 \ "ml"`  


Analogicznie jak powyżej możemy przeliczyć również inne jednostki. 

Pole powierzchni graniastosłupa

Pole powierzchni graniastosłupa to suma pól wszystkich jego ścian.

Pole powierzchni składa się z pola powierzchni bocznej czyli sumy pól wszystkich ścian bocznych oraz z dwóch pól powierzchni identycznych podstaw. 

`P_c=2P_p+P_b`  

`P_c \ \ \ ->`    pole powierzchni całkowitej graniastosłupa 

`P_p \ \ \ ->`    pole podstawy graniastosłupa 

`P_b \ \ \ ->`    pole powierzchni bocznej graniastosłupa


Z powyższego wzoru możemy wyprowadzić wzór na pole powierzchni prostopadłościanu oraz sześcianu. 

Prostopadłościan:

`P_c=2P_p+P_b` 

`P_p=a*b=ab` 

`P_b=2*a*c+2*b*c=2ac+2bc` 

Zatem: 

`P_c=2ab+2ac+2bc=2(ab+ac+bc)`  


Sześcian: 

Wszystkie krawędzie sześcianu mają jednakową długość.

Wszystkie ściany są przystającymi kwadratami. Jest ich 6. 

`P_c=2P_p+P_b`

`P_p=a*a=a^2`  

`P_b=4*a*a=4a^2` 

Zatem:

`P_c=2a^2+4a^2=6a^2` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom