
(Przykład) 1. are having
2. Are you going
Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb.
Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.
Cechy podzielności:
Podzielność liczby przez 2
Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.
Przykład:
Podzielność liczby przez 3
Liczba jest podzielna przez 3, gdy suma jej cyfr jest liczbą podzielną przez 3.
Przykład:
Podzielność liczby przez 4
Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.
Przykład:
Podzielność liczby przez 5
Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.
Przykład:
Podzielność liczby przez 6
Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.
Przykład:
Podzielność liczby przez 9
Liczba jest podzielna przez 9, gdy suma jej cyfr jest liczbą podzielną przez 9.
Przykład:
Podzielność liczby przez 10
Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.
Przykład:
Podzielność liczby przez 25
Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.
Przykład:
Podzielność liczby przez 100
Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.
Przykład:
System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:
Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):
Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.
Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).
Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$
Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.