Read the text (...) - Zadanie 5: Gateway plus 3 Workbook - strona 4
Język angielski
Wybierz książkę
Read the text (...) 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Język angielski

(wiersz 1) They're looking look

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: David Spencer
Wydawnictwo: Macmillan
Rok wydania:
ISBN: 9788376212425
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $a⊥b$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $a∥b$.
     

    proste-rownlegle
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$P_p$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $P_1$, $P_2$ i $P_3$ to pola ścian prostopadłościanu.

$P_p=2•P_1+2•P_2+2•P_3$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$P_p = 2•a•b + 2•b•c + 2•a•c$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $P_p=6•P$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $P_p = 6•a•a = 6•a^2$ (a - bok sześcianu).

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3124ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA7180WIADOMOŚCI
NAPISALIŚCIE757KOMENTARZY
komentarze
... i8814razy podziękowaliście
Autorom