Read the texts (...) - Zadanie TASK 4: Matura Focus 5. Workbook - strona 127
Język angielski
Matura Focus 5. Workbook (Zeszyt ćwiczeń, Pearson)
Read the texts (...) 4.8 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Język angielski

Read the texts (...)

TASK 3
 Zadanie

TASK 4
 Zadanie

1. D

2. B

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Daniel Brayshaw, Tomasz Siuta
Wydawnictwo: Pearson
Rok wydania:
ISBN: 9788378824800
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Rozszerzanie i skracanie ułamków

Każdy ułamek możemy rozszerzyć poprzez pomnożenie zarówno licznika jak i mianownika przez dowolną liczbę różną od 0. Pamiętamy przy tym o dwóch zasadach:

  • Każda liczba pomnożona przez 0 da 0
  • Kreska ułamkowa zastępuje znak dzielenia, a przez 0 nie dzielimy

Przykłady rozszerzania ułamków:

  • ${3}/{5}={3×3}/{5×3}={9}/{15}$
  • ${4}/{7}={4×5}/{7×5}={20}/{35}$

Każdy ułamek możemy skrócić dzieląc zarówno licznik i mianownik przez liczbę, przez którą obie liczby są podzielne.

Przykłady skracania ułamków

  • ${6}/{10}={3}/{5}$
  • ${8}/{32}={1}/{4}$
  • ${14}/{7}=2$

Uwaga!

Wynik ułamkowy zawsze sprowadzamy do postaci nieskracalnej! Możemy skracać lub rozszerzać część ułamkową w ułamku mieszanym.
średnia ważona

Średnia ważona różni się nieco od arytmetycznej. Oprócz samej sumy liczb do każdej z nich mamy przypisaną tzw. Wagę, która mówi nam jak bardzo ważna jest w naszej średniej dana liczba - częsty proceder na studiach czy w liceach.

Przykład:

kolokwium "waży" 30% czyli 0,3
egzamin "waży" 70% czyli 0,7

Wszystkie wagi muszą dać w sumie 1!
$0,3+0,7=1$

Załóżmy, że dostaliśmy z kolokwium ocenę 3, a z egzaminu ocenę 5, według średniej arytmetycznej mamy czyste 4. Jak to wygląda przy ważonej?

Waga oceny z kolokwium to:
$0,3$

Więc ocena to:
$0,3×3=0,9$

Waga z egzaminu: 0,7
Ocena:
$0,7×5=3,5$

Zatem razem mamy $3,5+0,9=4,4≈4,5$

Średnią ważoną stosują nawet nauczyciele matematyki, dlatego nawet 5 z kartkówek nie ratuje nas przed dwóją ze sprawdzianu i ocena jest niższa.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom