Choose the correct (...) - Zadanie 3: Matura Focus 5. Workbook - strona 121
Język angielski
Matura Focus 5. Workbook (Zeszyt ćwiczeń, Pearson)
Choose the correct (...) 4.38 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 1 Klasa
  3. Język angielski

Choose the correct (...)

1
 Zadanie
2
 Zadanie

3
 Zadanie

1. suggest

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Daniel Brayshaw, Tomasz Siuta
Wydawnictwo: Pearson
Rok wydania:
ISBN: 9788378824800
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Odejmowanie liczb całkowitych

Każde odejmowanie liczb całkowitych można zastąpić odpowiednim dodawaniem.

Przykłady:

  • $3 − (−9) = 3 + 9 = 12$
  • $(−4) − 5 = (-4) + (-5) = −9$
  • $(−8) − (−11) = (−8) + 11 = 11 + (−8) = 11 − 8 = 3$
     

Reguły odnoszące się do znaków + i -:

  • $(+a) = +a = a$
  • $- (-a) = +a = a$
  • $- (+a) = -a$
  • $+ (-a) = -a$
 
Działania na liczbach naturalnych
  1. Dodawanie liczb naturalnych

    dodawanie liczb naturalnych

    Własności dodawania liczb naturalnych:

    • Suma dowolnych liczb naturalnych jest liczbą naturalną,
    • $a + 0 = a$,
    • $a + b = b + a$ (przemienność dodawania – suma dowolnych liczb naturalnych nie zależy od kolejności składników),
    • $a + ( b + c ) = ( a + b ) + c$ (łączność dodawania – suma liczb naturalnych nie zależy od tego, które dwie liczby dodamy jako pierwsze – możemy najpierw dodać dwie pierwsze liczby, a do uzyskanej sumy dodać trzecią liczbę, albo możemy najpierw dodać liczby drugą i trzecią, a do uzyskanej sumy dodać pierwszą liczbę),
    • Jeżeli $a + c = b + c$, to $a = b$ (prawo skreślania wspólnego składnika).
       
  2. Odejmowanie liczb naturalnych

    odejmowanie liczb

    Własności odejmowania liczb naturalnych:

    • Różnica dwóch liczb naturalnych jest liczbą naturalną tylko wtedy, gdy odjemna jest większa od odjemnika lub równa odjemnikowi,
    • Jeżeli $a – b = 0$, to $a = b$. Jeżeli $a = b$, to $a – b = 0$
    • Jeżeli $a – b$ > 0, to a > b. Jeżeli a > b, to $a – b$ > 0
       
  3. Mnożenie liczb naturalnych

    img04

    Własności mnożenia liczb naturalnych:

    • Iloczyn liczb naturalnych jest liczbą naturalną,
    • $a•1=a$,
    • $a•b=b•a$ (przemienność mnożenia – iloczyn liczb naturalnych nie zależy od kolejności czynników),
    • $a•(b•c)=(a•b)•c$ (łączność mnożenia – iloczyn trzech liczb naturalnych nie zależy od sposobu łączenia czynników w grupy – to znaczy nie ma znaczenia które dwie liczby pomnożymy jako pierwsze, możemy najpierw pomnożyć dwie pierwsze liczby i otrzymany iloczyn pomnożyć przez trzecią liczbę lub możemy najpierw pomnożyć liczbę drugą i trzecią, a następnie otrzymany iloczyn pomnożyć przez pierwszą liczbę),
    • $a•0=0$ (iloczyn dowolnej liczby naturalnej a i liczby 0 jest równy 0),
    • Jeżeli iloczyn liczb naturalnych jest równy 0, to co najmniej jeden z czynników jest liczbą 0,
    • Jeżeli $a•c=b•c$ oraz $c≠0$, to $a=b$ (prawo skreślania wspólnego czynnika),
    • $a•(b+c)=a•b+a•c$ (rozdzielność mnożenia względem dodawania – mnożąc sumę przez liczbę naturalną możemy każdy składnik pomnożyć przez tę liczbę, a następnie dodać otrzymane wyniki).
       
  4. Dzielenie liczb naturalnych

    Dzielenie liczb naturalnych

    Własności dzielenia liczb naturalnych:

    • Iloraz dwóch liczb naturalnych nie zawsze daje w wyniku liczbę naturalną. Aby iloraz dwóch liczb był liczbą naturalną, dzielna musi być wielokrotnością dzielnika,
    • $a÷1 = a$,
    • Jeżeli a≠0, to $a÷a=1$,
    • (a+b)÷c=a÷c + b÷c (rozdzielność dzielenia względem dodawania – dzieląc sumę przez liczbę naturalną różną od 0 możemy najpierw każdy składnik podzielić przez tę liczbę a następnie dodać otrzymane wyniki).
       
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom