In pairs, describe the (...) - Zadanie 1: English Class A2+. Student's Book - strona 88
Język angielski
English Class A2+. Student's Book (Podręcznik, Pearson Education)
In pairs, describe the (...) 4.71 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Język angielski

PRZYKŁADOWE ROZWIĄZANIE

In the photo I can

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 7 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
7 szkoły podstawowej
Informacje
Autorzy: Bob Hastings, Stuart McKinley, Arek Tkacz
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788378825111
Autor rozwiązania
user profile

Kasia

7380

Korepetytor

Wiedza
Zaokrąglenia liczb

W życiu codziennym posługujemy się zaokrągleniami.

Nie zawsze trzeba znać dokładną wartość działania lub wskazać pewne wielkości z dużą dokładnością. Można podać przybliżoną ich wartość. 

Gdy przybliżenie liczby jest mniejsze od danej liczby, to mówimy o przybliżeniu z niedomiarem.

Gdy przybliżenie liczby jest większe od danej liczby, to mówimy o przybliżeniu z nadmiarem.


Jeżeli zaokrąglamy liczbę do rzędu części dziesiątych, części setnych itd., to odrzucamy wszystkie cyfry znajdujące się na prawo od miejsca, do którego zaokrąglamy.

Jeśli zaokrąglamy liczbę do jedności, dziesiątek, setek, itd., to wszystkie cyfry znajdujące się na prawo od miejsca, do którego zaokrąglamy zastępujemy cyframi 0 (cyfr znajdujących się po przecinku nie musimy zamieniać na cyfry 0, wystarczy je odrzucić). 


Reguły zaokrąglania: 

  • jeżeli pierwsza z odrzuconych cyfr jest mniejsza od 5 (czyli równa 0, 1, 2, 3, 4), to ostatnią cyfrę naszego przybliżenia zostawiamy bez zmian (jest to tak zwane zaokrąglenie w dół lub zaokrąglenie z niedomiarem); 

  • jeżeli pierwsza z odrzuconych cyfr jest większa lub równa 5 (czyli 5, 6, 7, 8, 9), to ostatnią cyfrę naszego przybliżenia zwiększamy o 1 (jest to tak zwane zaokrąglenie w górę lub zaokrąglenie z nadmiarem). 



Przykłady zaokrągleń liczb całkowitych do dziesiątek
:

  • 123 ~ 120 ← cyfrą dziesiątek danej liczby jest 2; cyfrę stojącą w niższym rzędzie (czyli na miejscu jedności) zastępujemy zerem, a cyfrę dziesiątek pozostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (3) jest mniejsza od 5, 

  • 145 ~ 150 ← cyfrą dziesiątek danej liczby jest 4; cyfrę stojącą w niższym rzędzie (czyli na miejscu jedności) zastępujemy zerem, a cyfrę dziesiątek zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (5) jest równa 5, 

  • 168 ~ 170 ← cyfrą dziesiątek danej liczby jest 6; cyfrę stojącą w niższym rzędzie (czyli na miejscu jedności) zastępujemy zerem, a cyfrę dziesiątek zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (8) jest większaod 5.


Przykłady zaokrągleń liczb całkowitych do setek
:

  • 1123 ~ 1100 ← cyfrą setek danej liczby jest 1; cyfry stojące w niższych rzędach (czyli na miejscu dziesiątek i jedności) zastępujemy zerami, a cyfrę setek pozostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (2) jest mniejsza od 5,

  • 340 ~ 300 ← cyfrą setek danej liczby jest 3; cyfry stojące w niższych rzędach (czyli na miejscu dziesiątek i jedności) zastępujemy zerami, a cyfrę setek pozostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (4) jest mniejsza od 5,

  • 789 ~ 800 ← cyfrą setek danej liczby jest 7; cyfry stojące w niższych rzędach (czyli na miejscu dziesiątek i jedności) zastępujemy zerami, a cyfrę setek zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (8) jest większa od 5.

Przykłady zaokrągleń liczb całkowitych do tysięcy:

  • 1507 ~ 2000 ← cyfrą tysięcy danej liczby jest 1; cyfry stojące w niższych rzędach (czyli na miejscu setek, dziesiątek i jedności) zastępujemy zerami, a cyfrę tysięcy zwiększamy o jeden, pierwsza z odrzuconych cyfr (5) jest większa lub równa 5;

  • 5346 ~ 5000 ← cyfrą tysięcy danej liczby jest 5; cyfry stojące w niższych rzędach (czyli na miejscu setek, dziesiątek i jedności) zastępujemy zerami, a cyfrę tysięcy zostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (3) jest mniejsza od 5,

  • 45 700 ~ 46 000 ← cyfrą tysięcy danej liczby jest 5; cyfry stojące w niższych rzędach (czyli na miejscu setek, dziesiątek i jedności) zastępujemy zerami, a cyfrę tysięcy zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (7) jest większa od 5.

Przykłady zaokrągleń ułamków dziesiętnych do jedności:

  • 164,3 ~ 164 ← cyfrą jedności danej liczby jest 4; cyfry stojące w niższych rzędach (czyli cyfrę części dziesiątych) odrzucamy, a cyfrę jedności zostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (3) jest mniejsza od 5,

  • 178,9 ~ 179 ← cyfrą jedności danej liczby jest 8; cyfry stojące w niższych rzędach (czyli cyfrę części dziesiątych) odrzucamy, a cyfrę jedności zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (9) jest większa od 5,

  • 43,36 ~ 43 ← cyfrą jedności danej liczby jest 3; cyfry stojące w niższych rzędach (czyli cyfrę części dziesiątych i cyfrę części setnych) odrzucamy a cyfrę jedności zostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (3) jest mniejsza od 5.

Przykłady zaokrągleń ułamków dziesiętnych do części dziesiątych, czyli do pierwszego miejsca po przecinku:

  • 157,67 ~ 157,7 ← cyfrą części dziesiątych jest 6; cyfry stojące w niższych rzędach (czyli cyfrę części setnych, cyfra stojąca na drugim miejscu po przecinku) odrzucamy, a cyfrę części dziesiątych zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (7) jest większa od 5,

  • 78,567 ~ 78,6 ← cyfrą części dziesiątych jest 5; cyfry stojące w niższych rzędach (czyli cyfrę części setnych oraz cyfrę części tysięcznych) odrzucamy, a cyfrę części dziesiątych zwiększamy o jeden, gdyż pierwsza z odrzuconych cyfr (6) jest większa od 5,

  • 89,31 ~ 89,3 ← cyfrą części dziesiątych jest 3; cyfry stojące w niższych rzędach (czyli cyfrę części setnych) odrzucamy, a cyfrę części dziesiątych zostawiamy bez zmian, gdyż pierwsza z odrzuconych cyfr (1) jest mniejsza od 5.

 

Wyłączanie wspólnego czynnika przed nawias

Mnożenie jednomianów i sum algebraicznych prowadziło do powstania sumy algebraicznej.

Czasami warto wykonać odwrotną operację czyli zamienić sumę algebraiczną na iloczyn jednomianu i krótszej sumy algebraicznej. Taką operację nazywamy wyłączaniem czynnika przed nawias.


Jak to zrobić? 

Mamy sumę:  `8xy+2x+9kx+17x` 

  1. Z każdego wyrazu sumy wybieramy powtarzający się element. W podanym przykładzie będzie to: `x` . 

    `8ul(x)y+2ul(x)+9kul(x)+17ul(x)`  

  2. Wyciągamy powtarzający się element przed nawias tak, by po pomnożeniu otrzymać początkową sumę algebraiczną.
    Z pozostałych elementów każdego jednomianu tworzymy sumę algebraiczną. 

    `x(8y+2+9k+17)`  


Przykłady:

  • `9x-3y+18k=ul(3)*3x+ul(3)*(-y)+ul(3)*6k=ul(3)(3x-y+6k)`  

  • `5kl+10xk-20qk=ul(5k)*l+ul(5k)*2x+ul(5k)*(-4q)=ul(5k)(l+2x-4q)`  
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom