Pracujcie w parach (...) - Zadanie 6: Steps plus IV. Class Book - strona 111
Język angielski
Steps plus IV. Class Book (Podręcznik, Oxford University Press)
Pracujcie w parach (...) 4.4 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Język angielski

Pracujcie w parach (...)

2
 Zadanie
3
 Zadanie

6
 Zadanie

1. Do - Yes, they do.

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Sylvia Wheeldon, Tim Falla, Paul A. Davies, Paul Shipton
Wydawnictwo: Oxford University Press
Rok wydania:
ISBN: 9780194206365
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Punkty przecięcia prostej i okręgu
Znając już równania prostych i okręgów możemy zabrać się za sprawdzanie, czy dane nam figury mają punkty wspólne - a jeśli tak, to gdzie one leżą.

Załóżmy, że prostą określa równanie $y = a_px + b_p$, zaś okrąg: $r^2 = (x-a_o)^2 + (y-b_o)^2$. Jest to nic innego jak układ równań z dwoma niewiadomymi.

Biorąc z pierwszego z nich $y$ i podstawiając go do drugiego otrzymujemy równanie kwadratowe, z którego wyliczamy $x$. To podejście od razu sprawdza także, czy prosta i okrąg w ogóle się przecinają (jeśli nie - delta równania kwadratowego wyjdzie ujemna) lub są prostopadłe (jest tylko jeden punkt przecięcia, więc delta wyjdzie równa 0).

Podstawiając:

$y = a_px + b_p$
$r^2 = (x-a_o)^2 + (a_px + b_p-b_o)^2$
$-a_o^2 - b^2 + 2bq - q^2 + r^2 + 2a_ox + 2ba_px - 2a_pqx - x^2 - a_p^2x^2 = 0$

Otrzymujemy więc rozwiązania:

$x_1 = {-√{-a_o^2a_p^2+2a_ob_oa_p-2a_oa_pb_p-b_o^2+2b_ob_p+a_p^2r^2-b_p^2+r^2}+a_o+b_oa_p-a_pb_p}/{a_p^2+1}$
$x_2 = {√{-a_o^2a_p^2+2a_ob_oa_p-2a_oa_pb_p-b_o^2+2b_ob_p+a_p^2r^2-b_p^2+r^2}+a_o+b_oa_p-a_pb_p}/{a_p^2+1}$

Wstawiając $x_1$ i $x_2$ do spowrotem do równania prostej wyliczamy $y$: $y_1 = a_px_1 + b_p$
$y_2 = a_px_2 + b_p$

Równania wydają się bardzo skomplikowane, ale tak naprawdę nie ma tutaj nic bardzo zaawansowanego. Być może łatwiej będzie sprawdzić tę metodę na przykładzie:

Znaleźć miejca przecięcia prostej $y = -x + 1$ z okręgiem o równaniu $6^2 = (x-1)^2+(y-2)^2$.

Podstawiając do równania okręgu $y$ z równania prostej otrzymujemy:

$6^2 = (x-1)^2 +(-x + 1 - 2)$
$36 = (x-1)^2 +(-x - 1)$
$36 = 2x^2 + 2$
$17 = x^2$
$x_1 = √{17}$
$x_2 = -√{17}$

Teraz możemy obliczyć $y$:
$y_1 = -√{17} + 1$
$y_2 = √{17} + 1$

Jak widać, podana prosta przecina się z okręgiem w punktach $(√{17}, -√{17} + 1)$ oraz $(-√{17}, √{17} + 1)$.
Koło
Koło jest czymś bardzo podobnym do okręgu: z tą tylko różnicą, że nie zawiera jedynie punktów odległych o $r$ od środka, a wszystkie punkty, których odległość jest mniejsza lub równa $r$. Wynika, że równanie okręgu zamienia się w nierówność koła:

$(x-a)^2 + (y-b)^2$ <= $r^2$

Sprawdzanie, czy dany punkt należy do koła przebiega analogicznie jak w przypadku okręgu: podstawiając pod $x$ i $y$ współrzędne punktu i porównując wartości po dwóch stronach nierówności.

Przykład: czy do koła opisanego nierównością $(x-1)^2 + (y-5)^2$ <= $3^2$ należy punkt $(1,1)$?

Podstawiając współrzędne otrzymujemy:

$(1-1)^2 + (1-5)^2$ <= $9$
$16$ <= $9$

Nie jest to prawdą, więc punkt nie należy do koła.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom