Przeczytaj poniższy tekst (...) - Zadanie 3: All Clear 7. Workbook - strona 80
Język angielski
All Clear 7. Workbook (Zeszyt ćwiczeń, Macmillan)
Przeczytaj poniższy tekst (...) 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Język angielski

Przeczytaj poniższy tekst (...)

1
 Zadanie
2
 Zadanie

3
 Zadanie

1. słów

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 7 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
7 szkoły podstawowej
Informacje
Autorzy: Catherine Smith
Wydawnictwo: Macmillan
Rok wydania:
ISBN: 9788376217758
Autor rozwiązania
user profile

Nauczyciel

Wiedza
System rzymski

System rzymski jest systemem zapisywania liczb, który w przeciwieństwie do zapisu pozycyjnego, pozwala zapisać liczby przy pomocy znaków o zawsze ustalonej wartości.


W systemie rzymskim do zapisania liczby używamy zdecydowanie mniej znaków niż w systemie dziesiątkowym.

Za pomocą 7 znaków (liter) : I, V, X, L, C, D i M jesteśmy w stanie ułożyć każdą liczbę naturalną od 1 do 3999.

Do każdego znaku przypisano inną wartość. 

Wyróżniamy cyfry podstawowe:

  • I = 1
  • X = 10
  • C = 100
  • M = 1000 

oraz cyfry pomocnicze:

  • V = 5
  • L = 50 
  • D = 500


Zasady zapisywania liczb w systemie rzymskim
:

  1. Możemy zapisać maksymalnie 3 takie same cyfry podstawowe (czyli I, X, C, M) obok siebie.

    Cyfry pomocnicze (czyli V, L, D) nie mogą występować obok siebie.

    Przykłady:

    • VIII  `->`   `5+1+1+1=8` 

    • MMCCC  `->`   `1000+1000+100+100+100=2300` 

  2. W celu uproszczenia wielu zapisów dopuszcza się umieszczenie cyfry podstawowej o mniejszej wartości przed cyfrą o większej wartości.

    W takim jednak przypadku od wartości większej liczby odejmujemy wartość mniejszej liczby.

    Przykłady:

    • IX  `->`   `10-1=9` 

    • CD  `->`   `500-100=400` 

  3. Gdy liczby (znaki) są ustawione od największej do najmniejszej to wówczas dodajemy ich wartości.

    Przykłady:

    • MMDCLVII  `->`   `1000+1000+500+100+50+5+1+1=2657`   

    • CXXVII  `->`   `100+10+10+5+1+1=127`   

 

Ciekawostka

System rzymski pochodzi od wysoko rozwiniętej cywilizacji Etrusków (ok. 500 r. p.n.e.).

Początkowo zapisywano liczby za pomocą pionowych kresek I, II, III, IIII, IIIII, ... .

Rzymianie przejęli cyfry od Etrusków i poddali je pewnym modyfikacjom oraz udoskonaleniom, co dało początki dzisiaj znanemu systemowi rzymskiemu.

Cyfr rzymskich używano na terenie imperium aż do jego upadku w V w. n.e.

W średniowieczu stały się standardowym systemem liczbowym całej łacińskiej Europy. Pod koniec tej epoki zaczęto coraz częściej używać cyfr arabskich, prostszych i wygodniejszych do obliczeń oraz zapisywania dużych liczb.

System rzymski stopniowo wychodził z codziennego użycia, chociaż do dziś jest powszechnie znany w Europie i stosowany do wielu celów.

Wyrażenia algebraiczne

Wyrażenia algebraiczne to wyrażenia składające się z liczb, liter, znaków działań i nawiasów.

Przykłady:

  • `x+5` 

  • `x^2-y^2` 

  • `2+a` 

  • `3x-5y` 

  • `y^2` 

  • `1/2ah` 

  • `-3/4` 


Uwaga!

Wyrażenie `3*x` możemy zapisać prościej jako `3x`.

Wyrażenie `3*(m+n)` możemy zapisać prościej jako `3(m+n)` .


Uwaga!!

Jeśli w danym wyrażeniu po kropce oznaczającej znak mnożenia występuje liczba NIE WOLNO pominąć kropki. 

Wyrażenia  `3+x*5`  nie można zapisać jako `strike(3+x5)` . 

Wyrażenia `(3m+n)*7` nie można zapisać jako  `strike((3m+n)7)` . 


Przykładowe wyrażenia algebraiczne i sposób ich odczytywania.      

Wyrażenie algebraiczne (zapis) Nazwa (sposób odczytywania)
`3+b`  suma liczb 3 i b
`a+b`  suma liczb a i b
`a-b`  różnica liczb a i b
`x*y`  iloczyn liczb x i y
`m:2`  iloraz liczby m i 2 (iloraz liczby m przez 2)
`2y`  podwojona liczba y,
liczba dwa razy większa od y,
iloczyn liczb 2 i y
`3b`  potrojona liczba b,
liczba trzy razy większa od b,
iloczyn liczb 3 i b
`1/2a`  połowa liczby a
`1/3x`  trzecia część liczby x
`x^2`  kwadrat liczby x
`y^3`  sześcian liczby y
`-2xy`  iloczyn liczb -2, x i y
`x-12`  różnica liczb x i 12, 
liczba o 12 mniejsza od x

 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom