In your notebook, write verbs (...) - Zadanie 6: New Exam Challenges 3. Student's Book - strona 67
Język angielski
New Exam Challenges 3. Student's Book (Podręcznik, Pearson Education)
In your notebook, write verbs (...) 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język angielski

In your notebook, write verbs (...)

3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

7
 Zadanie

1. has produced

Uzasadnienie: zdanie opisuje proces trwający od pewnego momentu w przyszłości do chwili obecnej. Nie określono tego momentu i proces nadal trwa, dlatego użyjemy czasu Present Perfect.

2. Did you watch

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: Michael Harris, David Mower , Anna Sikorzyńska, Lindsay White, Rod Fricker
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788378823087
Autor rozwiązania
user profile

Dominik

12957

Nauczyciel

Wiedza
Działania na potęgach i pierwiastkach

Działania na potęgach:

  • $k^a×k^b=k^{(a+b)} $

    Przykład: $5^7×5^3=5^10$

  • $k^a÷k^b=k^{(a-b)} $

    Przykład: $4^7÷4^3=4^4$

  • ${(k^a)}^b=k^{a×b} $

    Przykład: ${(8^2)}^3=8^6$

  • potegi1

    Przykład: potegi2

  • ${(a×b)}^n=a^n×b^n $

    Przykład: ${(6×7)}^3=6^3×7^3$

  • ${(a÷b)}^n=a^n÷b^n={a^n}/{b^n} $

    Przykład: ${(4/7)}^3={4^3}/{7^3} $

 

Działania na pierwiastkach:

  • $ √k×√l=√{k×l} $

    Przykład: $√3×√2=√6$

  • $√{a÷b}=√a÷√b={√a}/{√b} $

    Przykład: $√{6÷2}=√6÷√2=√6/√2 $

Usuwanie niewymierności z mianownika polega na usunięciu pierwiastka niemającego rozwiązania wymiernego.

$ a/√b={a√b}/b $

Przykład:

$ 3/{2√2}={3√2}/{2×2}={3√2}/4 $
 
Oczliczenia procentowe

Słowo procent (symbol %) pochodzi od łacińskiego wyrażenia pro centum oznaczającego na sto. Można więc powiedzieć że procent to nic innego jak ułamek mający w liczniku daną liczbę ( dany procent ), a w mianowniku liczbę 100.

$ p%=p/100 $
 

Przykłady:

  • $13%= 13/{100} $
  • $75%= 75/{100}=3/4 $
  • $0,78=78% $

Czasami pojawia się również pojęcie promil (symbol ‰). Promil jest bardzo podobny do procentu tylko zamiast na sto oznacza na tysiąc.

$ p‰=p/{1000} $
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom