Uzupełnij zdania, tłumacząc (...) - Zadanie Module 8: Access 3. Student's Book - strona 184
Język angielski
Access 3. Student's Book (Podręcznik, Express Publishing)
Uzupełnij zdania, tłumacząc (...) 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Język angielski

1. the hospital where

2. have been eaten

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: Virginia Evans,Jenny Dooley
Wydawnictwo: Express Publishing
Rok wydania:
ISBN: 9781471546365
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  1. Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik.

    Przykład:
    $3/8$ < $5/8$

  2. Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:
    $4/5$ > $4/9$

  3. Porównywanie ułamków o różnych mianownikach
    Aby porównać ułamki o różnych mianownikach, najpierw sprowadzamy je do wspólnego mianownika, a następnie porównujemy ich liczniki. Z dwóch ułamków o jednakowych mianownikach większy jest, który ma większy licznik.

    Przykład:
    Porównajmy ułamki $2/3$ i $3/4$.
    $2/3$ ? $3/4$

    ${2•4}/{3•4}$ ? ${3•3}/{4•3}$ ← sprowadzamy ułamki do wspólnego mianownika (rozszerzamy ułamki, tak aby w mianownikach otrzymać takie same liczby).

    $8/{12}$ < $9/{12}$

Najmniejsza wspólna wielokrotność

  Przypomnienie

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd. Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n.

Przykład:
Wielokrotnością liczby 4 jest: - 4 bo 4=1•4;
- 8 bo 8=2•4;
- 12 bo 12=3•4;
- 16 bo 16=4•4;
- 20 bo 20=5•4;
itd...

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Najmniejszą wspólną wielokrotność dwóch liczb naturalnych a i b oznaczamy symbolem NWW(a, b).

W celu wyznaczenia najmniejszej wspólnej wielokrotności dwóch liczb wykorzystujemy rozkład tych liczb na czynniki pierwsze. Następnie najmniejsza wspólna wielokrotność jest równa iloczynowi wszystkich czynników pierwszych, przy czym dany czynnik pierwszy w iloczynie występuje tyle razy, ile razy występował w rozkładzie, w którym pojawił się najwięcej razy.

Przykład:
Wyznaczmy najmniejszą wspólną wielokrotność liczb 1848 i 180 Zaczynamy od rozłożenia tych liczb na czynniki pierwsze:

nww

W powyższych rozkładach wybieramy wszystkie liczby, które występowały w rozkładach, przy czym dany czynnik pierwszy w iloczynie występuje tyle razy, ile razy występował w rozkładzie, w którym pojawił się najwięcej razy – w powyższych rozkładach zaznaczono je kolorem czerwonym (i tak bierzemy liczbę 2 trzy razy, liczbę 3 dwa razy, liczbę 5 jeden raz, liczbę 7 jeden raz, liczbę 11 jeden raz). Najmniejsza wspólna wielokrotność jest iloczynem tych liczb.

$NWW(1848, 180)=2•2•2•7•11•5•3•3=27 720$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom