Rozszyfruj wyrazy w nawiasach (...) - Zadanie 1: Real life. Pre-Intermediate. Workbook - strona 44
Język angielski
Real life. Pre-Intermediate. Workbook (Zeszyt ćwiczeń, Pearson Education)
Rozszyfruj wyrazy w nawiasach (...) 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Język angielski

Rozszyfruj wyrazy w nawiasach (...)

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

(przykład) 1. strict

2. easy-going

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Sarah Cunningham, Peter Moor, Marta Umińska
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788361243724
Autor rozwiązania
user profile

Kasia

7380

Korepetytor

Wiedza
Potęgowanie liczb całkowitych

Iloczyn jednakowych czynników można przedstawić w postaci potęgi.

potegowanie1

Symbol $a^n$ oznacza n-krotne mnożenie liczby a przez siebie; czyta się go a podniesione do n-tej potęgi, a do n-tej potęgi, a do potęgi n-tej.

potegowanie2
 

Przykłady:

  • $3•3= 3^2$ ← czytamy: 3 do potęgi drugiej lub druga potęga liczby 3,
  • $5•5•5= 5^3$ ← czytamy: 5 do potęgi trzeciej lub trzecia potęga liczby 5,
  • $(-1)•(-1)•(-1)•(-1)= (-1)^4$ ← czytamy: -1 do potęgi czwartej lub czwarta potęga liczby -1.


Dowolna liczba podniesiona do potęgi pierwszej to ta sama liczba → $a^1 = a$,

Zerowa potęga dowolnej liczby jest zawsze liczbą 1 → $a^0 = 1$.

  Uwaga

Zero podniesione do zerowej potęgi jest nieokreślone (jest niewykonalne).

Przykłady:

  • $5^0 = 1$
  • $(-8)^0 = 1$
  • $0^2 = 0$
  • $(-12)^1 = -12$

Drugą potęgę liczby a nazywamy także kwadratem liczby a i zapisujemy $a^2$

Trzecią potęgę liczby a nazywamy także sześcianem liczby a i zapisujemy $a^3$
 

  • Dowolna liczba (dodatnia lub ujemna) podniesiona do parzystej potęgi będzie zawsze liczbą dodatnią.

    Przykłady:

    • $(−3)^4 = 81$
    • $2^2 = 4$
  • Liczba ujemna podniesiona do potęgi nieparzystej będzie zawsze liczba ujemną.

    Przykład:

    • $(−2)^3 = (−8)$
Redukcja wyrazów podobnych

Jednomiany podobne to wyrazy sumy algebraicznej (sumy jednomianów) różniące się tylko współczynnikiem liczbowym.


Redukcja wyrazów podobnych
polega na dodaniu wyrazów podobnych.


Przykłady redukcji wyrazów podobnych:

  • `ul(2xy)+ul(ul(6z))-ul(10xy)+ul(ul(z))-k=-8xy+7z-k`  

    Jednomiany podobne to: 2xy i -10xy oraz 6z i z. 

  • `ul(8x)+ul(ul(2y))+ul(ul(ul(9x^2)))+7-ul(x)-ul(ul(3y))-ul(ul(ul(x^2)))=8x^2+7x-y+7` 

    Jednomiany podobne to: 9x2 i -x2, 8x i -x, 2y i -3y    
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom