Choose the correct (...) - Zadanie 3: My Matura Success. Intermediate. Workbook - strona 118
Język angielski
My Matura Success. Intermediate. Workbook (Zeszyt ćwiczeń, Pearson Education)
Choose the correct (...) 4.67 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 1 Klasa
  3. Język angielski

Choose the correct (...)

1
 Zadanie
2
 Zadanie

3
 Zadanie

1 d 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Stuart McKinlay, Bob Hastings, Beata Trapnell
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788378821663
Autor rozwiązania
user profile

Kasia

7380

Korepetytor

Wiedza
Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:

  1. Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej,

  2. Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej,

  3. Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Uwaga

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej,

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej,

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$0,34=0,340=0,3400=0,34000=...$
$0,5600=0,560=0,56$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.

Przykład:
Porównajmy ułamki 5,25 i 5,23.

Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Dodawanie liczb całkowitych
  1. Dodawanie dwóch liczb dodatnich – suma jest liczbą dodatnią.
    Przykład: $24 + 37 = 61$
     

  2. Dodawanie dwóch liczb ujemnych – suma jest liczbą ujemną (dodajemy liczby pomijając znaki minus, zapisujemy wynik, dopisując znak „-”.
    Przykład: $(-24) + (-37) = (-61)$
     

  3. Dodawanie dwóch liczb, z których jedna jest dodatnia, a druga ujemna – suma ma znak tego składnika, który na osi liczbowej znajduje się dalej od zera. Jeżeli do liczby dodatniej dodajemy liczbę ujemną, to tak naprawdę od liczby dodatniej odejmujemy liczbę przeciwną do danej liczby ujemnej.

    Przykłady:

    • $3 + (−4) = 3 − 4 = −1$
    • $(−3) + 7 = 7 + (−3) = 7 − 3 = 4$
    • $(−8) + 10 = 10 + (−8) = 10 − 8 = 2$
       
  4. Dodawanie dwóch liczb przeciwnych – suma jest równa 0.
    Przykład: $(-5) + 5 = 0$
     

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom