Complete the conversation (...) - Zadanie 4: Next Move 3. Students' Book - strona 93
Język angielski
Next Move 3. Students' Book (Podręcznik, Pearson Education)
Complete the conversation (...) 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Język angielski

(Przykład) 1. who

2. which

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: Fiona Beddall, Jayne Wildman, Tomasz Siuta
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788378823223
Autor rozwiązania
user profile

Dominik

12951

Nauczyciel

Wiedza
Błąd bezwzględny

W celu policzenia błędu bezwzględnego musimy znać wartość dokładną oraz przybliżoną, oznaczmy je jako:

d - wartość dokładna

p - wartość przybliżona

b - błąd

Oczywiście dobrane litery (zmienne) możemy mieć dowolne. Skorzystamy ze wzoru:

$b=|d-p|$

Najzwyczajniej w świecie liczymy różnicę pomiędzy naszym pomiarem, a wartością dokładną, jednakże korzystamy z wartości bezwzględnej. Uzasadnienie jest proste: nie możemy uzyskać błędu o wartości ujemnej (np.: "Te drzewa się różnią się o minus trzy metry"). Dla przypomnienia: wartość bezwzględna zawsze daje wynik dodatni lub 0, więcej o niej opowiemy w następnych działach (wpisz w naszą portalową wyszukiwarkę "wartość bezwzględna").

Przykład:

Odczytaliśmy z termometru za oknem temperaturę $-15,2 ^{o}C$. Termometr elektroniczny umieszczony tuż obok wskazuje temperaturę $-15,39 ^{o}C$. Jaki jest błąd bezwzględny naszego pomiaru?

$d=15,39$ -> W trakcie obliczeń opuszczę dla wygody jednostki, czyli tym razem stopnie Celsjusza.

$p=15,2$

$b=|d-p|$

$b=|-15,39-(-15,2)|$ -> pamiętamy, że dwa minusy dają plus

$b=|-15,39+15,2|=|-0,19|=0,19$ -> opuszczając wartość bezwzględną z liczby ujemnej zawsze mamy dodatnią

zatem błąd względny to:

$b=0,19^{o}C$
 
Zapisywanie przedziałów liczbowych

Metody rozwiązywania nierówności są bardzo podobne do metod rozwiązywania równań, jedyna różnica to zapis wyniku, czasem potrzebny jest również zapis w postaci przedziału liczbowego.

Mając nierówność musimy doprowadzić ją do postaci podobnej do tej:

niewiadome (tutaj znaki "<", ">", "=", "≥", "≤") liczby

np.: $x < 5 $

Pamiętamy o standardowych warunkach:

- Niewiadome przenosimy na lewą stronę, a liczby na prawą

- Usuwamy niepotrzebne nawiasy oraz niewymierności i rozwiązanie zostawiamy w postaci nieskracalnej


Zasady rysowania osi liczbowej:

- Jeżeli niewiadoma jest "mniejsza" (mniejsza lub równa) to linię kierujemy w lewo, jeżeli większa(większa lub równa) to w prawo

- Jeżeli niewiadoma jest "mniejsza lub równa"/"większa lub równa" to wtedy punkt zaznaczamy i kolorujemy kropkę (czyt. przedział domknięty).

- Jeżeli niewiadoma jest tylko "mniejsza"/"większa" to wtedy zaznaczamy punkt i pozostawiamy pustą kropkę (czyt. przedział otwarty).



Zasady zapisywania przedziałów liczbowych:

- zapisanie niewiadomej (x),

- znaku, który odczytujemy jako "należy do przedziału",

- przedziału dwóch liczb (lub liczby i nieskończoności lub -nieskończoności).

Liczby (i nieskończoność) zapisujemy w nawiasie. Po stronie nieskończoności nawias jest zawsze okrągły, a po stronie liczby:

- okrągły ( ), gdy na osi liczbowej kropka jest pusta (czyt. przedział otwarty), co oznacza, że dana liczba nie należy do przedziału;

- trójkątny < > jeżeli na osi kropka jest zakolorowana (czyt. przedział domknięty), co oznacza, że dana liczba należy do przedziału.



Całość najlepiej pokazać na przykładzie:

Rozwiąż nierówność: $2(x-3)+3(x+5)≥4x$

Najpierw musimy wymnożyć nawiasy

$2x-6+3x+15≥4x$

Teraz niewiadome przenosimy na lewą stronę ze zmianą znaku, a liczby na prawą również zmieniając znak

$2x+3x-4x≥6-15$

Sumujemy nasze x

$x≥-9$

Jeśli rozwiązanie jest w postaci przedziału możemy narysować oś i zaznaczyć na niej liczbę po prawej.

os1

$x∈<-9;∞)$

Pokażmy teraz bardziej zaawansowany przykład:

Znajdź zbiór rozwiązań nierówności ${x+1}/5+{1-4x}/3 < 4-2x $.

Najpierw musimy się pozbyć ułamków, najłatwiej przez pomnożenie przez wspólną wielokrotność. Jak taką znaleźć? Bardzo prosto! Mnożymy mianowniki $5*3=15$

Więc:

${x+1}/5+{1-4x}/3 < 4-2x$ $|×15$

Pamiętamy, że mnożąc całą nierówność mnożymy każdy składnik oddzielony plusem, minusem lub znakiem nierówności:

$15×{x+1}/5+15×{1-4x}/3 < 60-30x $

Skracamy odpowiednio

$3(x+1)+5(1-4x) < 60-30x$

Następnie mnożymy przez nawiasy

$3x+3+5-20x < 60-30x$

Niewiadome na lewą stronę, liczby na prawą

$3x-20x+30x < 60-5-3$

Sumujemy wszystko

$13x < 52$

Dzielimy całe równanie przez liczbę, która stoi przy x

$13x < 52$ $|:13$

$x < 4$

Zapisujemy przedział

$x∈(-∞;4)$

Rysujemy oś:

os2

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom