Język angielski

Read the theory (...) 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język angielski

Read the theory (...)

6
 Zadanie
8
 Zadanie

9
 Zadanie

To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Smart Time 4. Student's Book
Autorzy: Virginia Evans,Jenny Dooley
Wydawnictwo: Express Publishing
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Zobacz także
Udostępnij zadanie