Uwaga! Wstawione wyrazy zostały pogrubione w tłumaczeniu.
1. kind
(Jaki rodzaj muzyki lubisz?)
Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.
$$P_p$$ -> pole powierzchni
Każdy prostopadłościan ma 3 pary takich samych ścian.
Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.
$$P_p=2•P_1+2•P_2+2•P_3$$Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).
Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.
Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.
Proste prostopadłe – to proste przecinające się pod kątem prostym.
Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste
Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.
Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.