Język angielski

Order the letters and wirte the words. 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język angielski

Order the letters and wirte the words.

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Olivia Johnston
Wydawnictwo: Macmillan
Rok wydania:
ISBN: 9788376212074
Autor rozwiązania
user profile

Dominik

11161

Nauczyciel

Wiedza
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $$r.2$$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom