Which phrases a-f (...) - Zadanie 3: Matura Focus 3. Student's Book - strona 15
Język angielski
Matura Focus 3. Student's Book (Podręcznik, Pearson Education)
Which phrases a-f (...) 4.63 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 3 Klasa
  3. Język angielski

Which phrases a-f (...)

3
 Zadanie

7
 Zadanie

(przykład) a - hangs out

b - stop seeing each other

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Sue Kay, Vaughan Jones, Daniel Brayshaw
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788378823131
Autor rozwiązania
user profile

Kasia

7375

Korepetytor

Wiedza
Mnożenie i dzielenie ułamków

Mnożenie i dzielenie to po dodawaniu i odejmowaniu najbardziej popularne działania stosowane we wszystkich dziedzinach nauki.


Mnożenie i dzielenie ułamków zwykłych

Aby pomnożyć dwa ułamki zwykłe należy obliczyć iloczyn ich liczników oraz mianowników. 

Aby podzielić dwa ułamki zwykłe należy dzielną pomnożyć razy odwrotność dzielnika.  

Przykłady:

  • `4/5*3/7=(4*3)/(5*7)=12/35` 

  • `1 2/5*4/9=7/5*4/9=28/45` 

  •  `4/7:5/8=4/7*8/5=32/35` 

  • `2 4/5: 3/7=14/5:3/7=14/5*7/3=98/15=6 8/15`     


Mnożenie i dzielenie ułamków dziesiętnych 

Aby pomnożyć dwa ułamki dziesiętne chwilowo pomijamy przecinki i wykonujemy działanie na liczbach naturalnych.

Następnie obliczamy ile łącznie cyfr znajduje się po przecinku w obu czynnikach. Tyle samo cyfr musi znaleźć się po przecinku w otrzymanym wyniku. 

Aby podzielić dwa ułamki dziesiętne należy w dzielnej i dzielniku przesunąć przecinek o tyle miejsc w prawo, aby dzielnik był liczbą naturalną. 

Przykłady:

  • `3,4*1,21=4,114` 

  • `5,7*1,42=8,094`  

  • `3,2:0,8=32:8=4`  

  • `3,55:0,5=35,5:5=7,1`  
Sposoby rozwiązywania równań

Aby obliczyć jaka liczba spełnia równanie należy je rozwiązać.

Najprostszą metodą rozwiązywania równań jest metoda równań równoważnych.

Polega ona na dodaniu/odjęciu tego samego wyrażenia od obu stron równania lub na pomnożeniu/podzieleniu przez tę samą liczbę (różną od zera) obu stron równania.

Przykłady:

  1. dodanie tego samego wyrażenia

    `x-10=14 \ \ \ \ \ \ \ \ |+10`   

    `x=24`    (dodaliśmy do obu stron równania liczbę 10)

  2. odjęcie tego samego wyrażenia

    `y+13=23 \ \ \ \ \ \ \ \ |-13` 

    `y=10`    (odjęliśmy od obu stron równania liczbę 13)

  3. pomnożenie przez tę samą liczbę

    `0,5x=7 \ \ \ \ \ \ \ \ |*2`  

    `x=14`     (pomnożyliśmy obie strony równania razy 2)

  4. podzielenie przez tę samą liczbę

    `3x=27 \ \ \ \ \ \ \ \ |:3`  

    `x=9`    (podzieliliśmy obie strony równania przez 3)

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom