Uzupełnij zdania. Użyj jednego z czasowników... - Zadanie 4: New English Plus 1.Materiały ćwiczeniowe wersja pełna - strona 54
Język angielski
New English Plus 1.Materiały ćwiczeniowe wersja pełna (Zeszyt ćwiczeń, Oxford University Press)
Uzupełnij zdania. Użyj jednego z czasowników... 4.38 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Język angielski

Uzupełnij zdania. Użyj jednego z czasowników...

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: Janet Hardy-Gould, Barbara Mackay
Wydawnictwo: Oxford University Press
Rok wydania:
Autor rozwiązania
user profile

Dominik

12957

Nauczyciel

Wiedza
Ułamki zwykłe

O ułamkach uczyliśmy się już w szkole podstawowej.

Oznaczamy nimi w matematyce „część” czegoś. 

 

Ułamek składa się z licznika, mianownika oraz kreski ułamkowej.

ułamek

Wyrażenie postaci `a/b` , gdzie a i b to liczby naturalne oraz b jest różne od zera, nazywamy ułamkiem zwykłym.

Ciekawostka

Współczesny sposób zapisu ułamków pochodzi od matematyków hinduskich, którzy zapisywali licznik i mianownik nie używając kreski rozdzielającej. Dodanie kreski rozdzielającej zawdzięczamy Arabom tłumaczącym dzieła Hindusów. W Europie znane do dziś oznaczenie ułamków jako pierwszy w swoich pracach publikuje włoski matematyk Fibonacci.

Ułamki to inny zapis dzielenia liczb naturalnych.
Iloraz liczb naturalnych `a:b` możemy zapisać w postaci ułamka `a/b` . Dzielna `a`  jest licznikiem ułamka, dzielnik `b`  różny od zera jest mianownikiem, a kreska ułamkowa zastępuje znak dzielenia: `a:b=a/b` , gdzie b jest różne od zera ($b≠0$).

Przykłady:

  • `9/2=9:2`  

  • `2/3=2:3`  


Odwrotność ułamka

Jeżeli dany jest ułamek `a/b`, to ułamek `b/a` nazywamy odwrotnością ułamka `a/b` , gdzie `a!=0 \ "i" \ b!=0` .

Przykłady

  • odwrotnością liczby `3/4`  jest ułamek `4/3` ;  

  • odwrotnością liczby `4=4/1`  jest ułamek `1/4`,

  • odwrotnością ułamka  `1/9` jest liczba `9/1=9`


Ułamek w życiu codziennym

W życiu codziennym ułamek jest stosowany bardzo często, głównie oznacza część (kawałek) jakiejś całości.

Przykład:

  • Gdy podzielimy pizzę na 7 kawałków i zabierzemy 3 kawałki, to będziemy mieli `3/7`  („trzy siódme”) pizzy.

    Ogólnie:

    `a/b`   → jeśli mamy jakiś przedmiot (np. jabłko, tort, pizzę, czekoladę), to mianownik `b`  mówi na ile części go dzielimy, a licznik `a`  – ile takich części zabieramy.

Tworzenie nowych podstaw

Jeżeli w przykładzie (często to się zdarza) podane nie będą potęgi o tych samych wykładnikach, musimy je znaleźć.

Jedyny wymóg to zapamiętanie tzw. potęg złożonych czyli:

  • $4=2^2$
  • $27=3^3$


Przykład:

$8^3÷2^10×16^2÷4^3$

Każda z tych liczb w podstawie to potęga dwójki, pokażmy to:

${(2^3)}^3÷2^10×{(2^4)}^2÷{(2^2)}^3$

Teraz użyjmy potęgowania potęg:

$2^9÷2^10×2^8÷2^6$

I mnożymy oraz dzielimy:

$2^{9-10+8-6}=2^1=2$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom