Historia

Akt końcowy kongresu wiedeńskiego 4.6 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Historia

Akt końcowy kongresu wiedeńskiego

Tekst źródłowy
 Zadanie

1. Określ, jaki status miało Wolne Miasto Kraków.

- Wolne Miasto Kraków (Rzeczpospolitą Krakowską) ogłoszono wolnym, niepodległym i ściśle neutralnym miastem pod opieką trzech zaborców: Rosji, Austrii i Prus.

2. Oceń, czy decyzje kongresu wiedeńskiego można określić mianem kolejnego rozbioru Polski.

- Moim zdaniem decyzje kongresu wiedeńskiego można określić mianem kolejnego rozbioru Polski

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Anastazja

20 października 2018
Dzięki!
user avatar
Martyna

12 września 2018
Dzieki za pomoc
klasa:
Informacje
Autorzy: Stanisław Roszak, Anna Łaszkiewicz, Jarosław Kłaczkow
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326731693
Autor rozwiązania
user profile

Paulina

60566

Nauczyciel

Wiedza
Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom